

	 	

	

	

CIS	Kubernetes	Benchmark	
	

v1.6.1	-	10-01-2020																																																											

	

1	|	P a g e 	
	

Terms	of	Use	
Please see the below link for our current terms of use:
https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/	

	 	

2	|	P a g e 	
	

Table	of	Contents	

Terms	of	Use	...	1

Overview	..	3

Intended	Audience	..	3

Consensus	Guidance	...	3

Typographical	Conventions	..	5

Scoring	Information	..	Error!	Bookmark	not	defined.

Profile	Definitions	..	6

Acknowledgements	...	7

Recommendations	..	8

Appendix:	Summary	Table	...	256

Appendix:	Change	History	..	263

	

	

	 	

3	|	P a g e 	
	

Overview	
This	document	provides	prescriptive	guidance	for	establishing	a	secure	configuration	
posture	for	Kubernetes	1.16	-	1.18.	To	obtain	the	latest	version	of	this	guide,	please	visit	
www.cisecurity.org	.	If	you	have	questions,	comments,	or	have	identified	ways	to	improve	
this	guide,	please	write	us	at	support@cisecurity.org.	
**Special	Note:	**The	set	of	configuration	files	mentioned	anywhere	throughout	this	
benchmark	document	may	vary	according	to	the	deployment	tool	and	the	platform.	Any	
reference	to	a	configuration	file	should	be	modified	according	to	the	actual	configuration	
files	used	on	the	specific	deployment.	
For	example,	the	configuration	file	for	the	Kubernetes	API	server	installed	by	the	kubeadm	
tool	may	be	found	in	/etc/kubernetes/manifests/kube-apiserver.yaml,	but	the	same	file	
may	be	called	/etc/kubernetes/manifests/kube-apiserver.manifest	when	installed	by	
kops	or	kubespray.	

	

Intended Audience

This	document	is	intended	for	system	and	application	administrators,	security	specialists,	
auditors,	help	desk,	and	platform	deployment	personnel	who	plan	to	develop,	deploy,	
assess,	or	secure	solutions	that	incorporate	Kubernetes	1.16	-	1.18.	

	

Consensus Guidance

This	benchmark	was	created	using	a	consensus	review	process	comprised	of	subject	
matter	experts.	Consensus	participants	provide	perspective	from	a	diverse	set	of	
backgrounds	including	consulting,	software	development,	audit	and	compliance,	security	
research,	operations,	government,	and	legal.		

Each	CIS	benchmark	undergoes	two	phases	of	consensus	review.	The	first	phase	occurs	
during	initial	benchmark	development.	During	this	phase,	subject	matter	experts	convene	
to	discuss,	create,	and	test	working	drafts	of	the	benchmark.	This	discussion	occurs	until	
consensus	has	been	reached	on	benchmark	recommendations.	The	second	phase	begins	
after	the	benchmark	has	been	published.	During	this	phase,	all	feedback	provided	by	the	
Internet	community	is	reviewed	by	the	consensus	team	for	incorporation	in	the	
benchmark.	If	you	are	interested	in	participating	in	the	consensus	process,	please	visit	
https://workbench.cisecurity.org/.	

4	|	P a g e 	
	

	 	

5	|	P a g e 	
	

Typographical Conventions

The	following	typographical	conventions	are	used	throughout	this	guide:	

Convention	 Meaning	

Stylized Monospace font Used	for	blocks	of	code,	command,	and	script	examples.	
Text	should	be	interpreted	exactly	as	presented.	

Monospace font Used	for	inline	code,	commands,	or	examples.	Text	should	
be	interpreted	exactly	as	presented.		

<italic	font	in	brackets>	 Italic	texts	set	in	angle	brackets	denote	a	variable	
requiring	substitution	for	a	real	value.	

Italic	font	 Used	to	denote	the	title	of	a	book,	article,	or	other	
publication.	

Note	 Additional	information	or	caveats	

	

Assessment Status

An	assessment	status	is	included	for	every	recommendation.	The	assessment	status	
indicates	whether	the	given	recommendation	can	be	automated	or	requires	manual	steps	
to	implement.	Both	statuses	are	equally	important	and	are	determined	and	supported	as	
defined	below:		

Automated	

Represents	recommendations	for	which	assessment	of	a	technical	control	can	be	fully	
automated	and	validated	to	a	pass/fail	state.	Recommendations	will	include	the	necessary	
information	to	implement	automation.	

Manual	

Represents	recommendations	for	which	assessment	of	a	technical	control	cannot	be	fully	
automated	and	requires	all	or	some	manual	steps	to	validate	that	the	configured	state	is	set	
as	expected.	The	expected	state	can	vary	depending	on	the	environment.	

	

	 	

6	|	P a g e 	
	

Profile Definitions

The	following	configuration	profiles	are	defined	by	this	Benchmark:	

• Level	1	-	Master	Node	

Items	in	this	profile	intend	to:	

o be	practical	and	prudent;	
o provide	a	clear	security	benefit;	and	
o not	inhibit	the	utility	of	the	technology	beyond	acceptable	means.	

• Level	2	-	Master	Node	

• Level	1	-	Worker	Node	

Items	in	this	profile	intend	to:	

o be	practical	and	prudent;	
o provide	a	clear	security	benefit;	and	
o not	inhibit	the	utility	of	the	technology	beyond	acceptable	means.	

• Level	2	-	Worker	Node	

	

	 	

7	|	P a g e 	
	

	

Acknowledgements

This benchmark exemplifies the great things a community of users, vendors, and subject matter
experts can accomplish through consensus collaboration. The CIS community thanks the entire
consensus team with special recognition to the following individuals who contributed greatly to
the creation of this guide:

This	benchmark	exemplifies	the	great	things	a	community	of	users,	vendors,	and	subject	
matter	experts	can	accomplish	through	consensus	collaboration.	The	CIS	community	
thanks	the	entire	consensus	team	with	special	recognition	to	the	following	individuals	who	
contributed	greatly	to	the	creation	of	this	guide:	
	
Authors	
Rory	Mccune	
Liz	Rice		
Randall	Mowen	(GISP)	
	
Contributors	
Pravin	Goyal	
Prabhu	Angadi	Security	Content	Author	(Compliance	|	Configuration	|	Checklist)	
Jordan	Liggitt	
Eric	Chiang	
Jordan	Rakoske	(GSEC,	GCWN)	
Sara	Archacki		
Maya	Kaczorowski		
Andrew	Martin		
Mark	Larinde		

	

	 	

8	|	P a g e 	
	

Recommendations	
1 Control Plane Components

This	section	consists	of	security	recommendations	for	the	direct	configuration	of	
Kubernetes	control	plane	processes.	These	recommendations	may	not	be	directly	
applicable	for	cluster	operators	in	environments	where	these	components	are	managed	by	
a	3rd	party.	

9	|	P a g e 	
	

1.1 Master Node Configuration Files

1.1.1 Ensure that the API server pod specification file permissions are
set to 644 or more restrictive (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	API	server	pod	specification	file	has	permissions	of	644	or	more	restrictive.	

Rationale:	

The	API	server	pod	specification	file	controls	various	parameters	that	set	the	behavior	of	
the	API	server.	You	should	restrict	its	file	permissions	to	maintain	the	integrity	of	the	file.	
The	file	should	be	writable	by	only	the	administrators	on	the	system.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %a /etc/kubernetes/manifests/kube-apiserver.yaml

Verify	that	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chmod 644 /etc/kubernetes/manifests/kube-apiserver.yaml

Default	Value:

By	default,	the	kube-apiserver.yaml	file	has	permissions	of	640.	

References:	

10	|	P a g e 	
	

1. https://kubernetes.io/docs/admin/kube-apiserver/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

11	|	P a g e 	
	

1.1.2 Ensure that the API server pod specification file ownership is set to
root:root (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	API	server	pod	specification	file	ownership	is	set	to	root:root.	

Rationale:	

The	API	server	pod	specification	file	controls	various	parameters	that	set	the	behavior	of	
the	API	server.	You	should	set	its	file	ownership	to	maintain	the	integrity	of	the	file.	The	file	
should	be	owned	by	root:root.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %U:%G /etc/kubernetes/manifests/kube-apiserver.yaml

Verify	that	the	ownership	is	set	to	root:root.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chown root:root /etc/kubernetes/manifests/kube-apiserver.yaml

Default	Value:

By	default,	the	kube-apiserver.yaml	file	ownership	is	set	to	root:root.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	

12	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

13	|	P a g e 	
	

1.1.3 Ensure that the controller manager pod specification file
permissions are set to 644 or more restrictive (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	controller	manager	pod	specification	file	has	permissions	of	644	or	more	
restrictive.	

Rationale:	

The	controller	manager	pod	specification	file	controls	various	parameters	that	set	the	
behavior	of	the	Controller	Manager	on	the	master	node.	You	should	restrict	its	file	
permissions	to	maintain	the	integrity	of	the	file.	The	file	should	be	writable	by	only	the	
administrators	on	the	system.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %a /etc/kubernetes/manifests/kube-controller-manager.yaml

Verify	that	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chmod 644 /etc/kubernetes/manifests/kube-controller-manager.yaml

Default	Value:

By	default,	the	kube-controller-manager.yaml	file	has	permissions	of	640.	

References:	

14	|	P a g e 	
	

1. https://kubernetes.io/docs/admin/kube-apiserver/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

15	|	P a g e 	
	

1.1.4 Ensure that the controller manager pod specification file
ownership is set to root:root (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	controller	manager	pod	specification	file	ownership	is	set	to	root:root.	

Rationale:	

The	controller	manager	pod	specification	file	controls	various	parameters	that	set	the	
behavior	of	various	components	of	the	master	node.	You	should	set	its	file	ownership	to	
maintain	the	integrity	of	the	file.	The	file	should	be	owned	by	root:root.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %U:%G /etc/kubernetes/manifests/kube-controller-manager.yaml

Verify	that	the	ownership	is	set	to	root:root.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chown root:root /etc/kubernetes/manifests/kube-controller-manager.yaml

Default	Value:

By	default,	kube-controller-manager.yaml	file	ownership	is	set	to	root:root.	

References:	

1. https://kubernetes.io/docs/admin/kube-controller-manager	

16	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

17	|	P a g e 	
	

1.1.5 Ensure that the scheduler pod specification file permissions are set
to 644 or more restrictive (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	scheduler	pod	specification	file	has	permissions	of	644	or	more	restrictive.	

Rationale:	

The	scheduler	pod	specification	file	controls	various	parameters	that	set	the	behavior	of	
the	Scheduler	service	in	the	master	node.	You	should	restrict	its	file	permissions	to	
maintain	the	integrity	of	the	file.	The	file	should	be	writable	by	only	the	administrators	on	
the	system.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %a /etc/kubernetes/manifests/kube-scheduler.yaml

Verify	that	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chmod 644 /etc/kubernetes/manifests/kube-scheduler.yaml

Default	Value:

By	default,	kube-scheduler.yaml	file	has	permissions	of	640.	

References:	

1. https://kubernetes.io/docs/admin/kube-scheduler/	

18	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

19	|	P a g e 	
	

1.1.6 Ensure that the scheduler pod specification file ownership is set to
root:root (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	scheduler	pod	specification	file	ownership	is	set	to	root:root.	

Rationale:	

The	scheduler	pod	specification	file	controls	various	parameters	that	set	the	behavior	of	
the	kube-scheduler	service	in	the	master	node.	You	should	set	its	file	ownership	to	
maintain	the	integrity	of	the	file.	The	file	should	be	owned	by	root:root.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %U:%G /etc/kubernetes/manifests/kube-scheduler.yaml

Verify	that	the	ownership	is	set	to	root:root.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chown root:root /etc/kubernetes/manifests/kube-scheduler.yaml

Default	Value:

By	default,	kube-scheduler.yaml	file	ownership	is	set	to	root:root.	

References:	

1. https://kubernetes.io/docs/admin/kube-scheduler/	

20	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

21	|	P a g e 	
	

1.1.7 Ensure that the etcd pod specification file permissions are set to
644 or more restrictive (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	/etc/kubernetes/manifests/etcd.yaml	file	has	permissions	of	644	or	
more	restrictive.	

Rationale:	

The	etcd	pod	specification	file	/etc/kubernetes/manifests/etcd.yaml	controls	various	
parameters	that	set	the	behavior	of	the	etcd	service	in	the	master	node.	etcd	is	a	highly-
available	key-value	store	which	Kubernetes	uses	for	persistent	storage	of	all	of	its	REST	API	
object.	You	should	restrict	its	file	permissions	to	maintain	the	integrity	of	the	file.	The	file	
should	be	writable	by	only	the	administrators	on	the	system.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %a /etc/kubernetes/manifests/etcd.yaml

Verify	that	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chmod 644 /etc/kubernetes/manifests/etcd.yaml

Default	Value:

By	default,	/etc/kubernetes/manifests/etcd.yaml	file	has	permissions	of	640.	

References:	

22	|	P a g e 	
	

1. https://coreos.com/etcd	
2. https://kubernetes.io/docs/admin/etcd/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

23	|	P a g e 	
	

1.1.8 Ensure that the etcd pod specification file ownership is set to
root:root (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	/etc/kubernetes/manifests/etcd.yaml	file	ownership	is	set	to	
root:root.	

Rationale:	

The	etcd	pod	specification	file	/etc/kubernetes/manifests/etcd.yaml	controls	various	
parameters	that	set	the	behavior	of	the	etcd	service	in	the	master	node.	etcd	is	a	highly-
available	key-value	store	which	Kubernetes	uses	for	persistent	storage	of	all	of	its	REST	API	
object.	You	should	set	its	file	ownership	to	maintain	the	integrity	of	the	file.	The	file	should	
be	owned	by	root:root.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %U:%G /etc/kubernetes/manifests/etcd.yaml

Verify	that	the	ownership	is	set	to	root:root.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chown root:root /etc/kubernetes/manifests/etcd.yaml

Default	Value:

By	default,	/etc/kubernetes/manifests/etcd.yaml	file	ownership	is	set	to	root:root.	

References:	

24	|	P a g e 	
	

1. https://coreos.com/etcd	
2. https://kubernetes.io/docs/admin/etcd/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

25	|	P a g e 	
	

1.1.9 Ensure that the Container Network Interface file permissions are
set to 644 or more restrictive (Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	Container	Network	Interface	files	have	permissions	of	644	or	more	
restrictive.	

Rationale:	

Container	Network	Interface	provides	various	networking	options	for	overlay	networking.	
You	should	consult	their	documentation	and	restrict	their	respective	file	permissions	to	
maintain	the	integrity	of	those	files.	Those	files	should	be	writable	by	only	the	
administrators	on	the	system.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %a <path/to/cni/files>

Verify	that	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chmod 644 <path/to/cni/files>

Default	Value:

NA	

References:	

26	|	P a g e 	
	

1. https://kubernetes.io/docs/concepts/cluster-administration/networking/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

27	|	P a g e 	
	

1.1.10 Ensure that the Container Network Interface file ownership is set
to root:root (Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	Container	Network	Interface	files	have	ownership	set	to	root:root.	

Rationale:	

Container	Network	Interface	provides	various	networking	options	for	overlay	networking.	
You	should	consult	their	documentation	and	restrict	their	respective	file	permissions	to	
maintain	the	integrity	of	those	files.	Those	files	should	be	owned	by	root:root.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %U:%G <path/to/cni/files>

Verify	that	the	ownership	is	set	to	root:root.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chown root:root <path/to/cni/files>

Default	Value:

NA	

References:	

1. https://kubernetes.io/docs/concepts/cluster-administration/networking/	

28	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

29	|	P a g e 	
	

1.1.11 Ensure that the etcd data directory permissions are set to 700 or
more restrictive (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	etcd	data	directory	has	permissions	of	700	or	more	restrictive.	

Rationale:	

etcd	is	a	highly-available	key-value	store	used	by	Kubernetes	deployments	for	persistent	
storage	of	all	of	its	REST	API	objects.	This	data	directory	should	be	protected	from	any	
unauthorized	reads	or	writes.	It	should	not	be	readable	or	writable	by	any	group	members	
or	the	world.	

Impact:	

None	

Audit:	

On	the	etcd	server	node,	get	the	etcd	data	directory,	passed	as	an	argument	--data-dir,	
from	the	below	command:	

ps -ef | grep etcd

Run	the	below	command	(based	on	the	etcd	data	directory	found	above).	For	example,

stat -c %a /var/lib/etcd

Verify	that	the	permissions	are	700	or	more	restrictive.

Remediation:	

On	the	etcd	server	node,	get	the	etcd	data	directory,	passed	as	an	argument	--data-dir,	
from	the	below	command:	

ps -ef | grep etcd

Run	the	below	command	(based	on	the	etcd	data	directory	found	above).	For	example,

chmod 700 /var/lib/etcd

30	|	P a g e 	
	

Default	Value:

By	default,	etcd	data	directory	has	permissions	of	755.	

References:	

1. https://coreos.com/etcd/docs/latest/op-guide/configuration.html#data-dir	
2. https://kubernetes.io/docs/admin/etcd/	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

31	|	P a g e 	
	

1.1.12 Ensure that the etcd data directory ownership is set to etcd:etcd
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	etcd	data	directory	ownership	is	set	to	etcd:etcd.	

Rationale:	

etcd	is	a	highly-available	key-value	store	used	by	Kubernetes	deployments	for	persistent	
storage	of	all	of	its	REST	API	objects.	This	data	directory	should	be	protected	from	any	
unauthorized	reads	or	writes.	It	should	be	owned	by	etcd:etcd.	

Impact:	

None	

Audit:	

On	the	etcd	server	node,	get	the	etcd	data	directory,	passed	as	an	argument	--data-dir,	
from	the	below	command:	

ps -ef | grep etcd

Run	the	below	command	(based	on	the	etcd	data	directory	found	above).	For	example,

stat -c %U:%G /var/lib/etcd

Verify	that	the	ownership	is	set	to	etcd:etcd.

Remediation:	

On	the	etcd	server	node,	get	the	etcd	data	directory,	passed	as	an	argument	--data-dir,	
from	the	below	command:	

ps -ef | grep etcd

Run	the	below	command	(based	on	the	etcd	data	directory	found	above).	For	example,

chown etcd:etcd /var/lib/etcd

32	|	P a g e 	
	

Default	Value:

By	default,	etcd	data	directory	ownership	is	set	to	etcd:etcd.	

References:	

1. https://coreos.com/etcd/docs/latest/op-guide/configuration.html#data-dir	
2. https://kubernetes.io/docs/admin/etcd/	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

33	|	P a g e 	
	

1.1.13 Ensure that the admin.conf file permissions are set to 644 or
more restrictive (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	admin.conf	file	has	permissions	of	644	or	more	restrictive.	

Rationale:	

The	admin.conf	is	the	administrator	kubeconfig	file	defining	various	settings	for	the	
administration	of	the	cluster.	You	should	restrict	its	file	permissions	to	maintain	the	
integrity	of	the	file.	The	file	should	be	writable	by	only	the	administrators	on	the	system.	

Impact:	

None.	

Audit:	

Run	the	following	command	(based	on	the	file	location	on	your	system)	on	the	master	
node.	For	example,	

stat -c %a /etc/kubernetes/admin.conf

Verify	that	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chmod 644 /etc/kubernetes/admin.conf

Default	Value:

By	default,	admin.conf	has	permissions	of	640.	

References:	

1. https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/	

34	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

35	|	P a g e 	
	

1.1.14 Ensure that the admin.conf file ownership is set to root:root
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	admin.conf	file	ownership	is	set	to	root:root.	

Rationale:	

The	admin.conf	file	contains	the	admin	credentials	for	the	cluster.	You	should	set	its	file	
ownership	to	maintain	the	integrity	of	the	file.	The	file	should	be	owned	by	root:root.	

Impact:	

None.	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %U:%G /etc/kubernetes/admin.conf

Verify	that	the	ownership	is	set	to	root:root.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chown root:root /etc/kubernetes/admin.conf

Default	Value:

By	default,	admin.conf	file	ownership	is	set	to	root:root.	

References:	

1. https://kubernetes.io/docs/admin/kubeadm/	

CIS	Controls:	

36	|	P a g e 	
	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

37	|	P a g e 	
	

1.1.15 Ensure that the scheduler.conf file permissions are set to 644 or
more restrictive (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	scheduler.conf	file	has	permissions	of	644	or	more	restrictive.	

Rationale:	

The	scheduler.conf	file	is	the	kubeconfig	file	for	the	Scheduler.	You	should	restrict	its	file	
permissions	to	maintain	the	integrity	of	the	file.	The	file	should	be	writable	by	only	the	
administrators	on	the	system.	

Impact:	

None	

Audit:	

Run	the	following	command	(based	on	the	file	location	on	your	system)	on	the	master	
node.	For	example,	

stat -c %a /etc/kubernetes/scheduler.conf

Verify	that	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chmod 644 /etc/kubernetes/scheduler.conf

Default	Value:

By	default,	scheduler.conf	has	permissions	of	640.	

References:	

1. https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/	

38	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

39	|	P a g e 	
	

1.1.16 Ensure that the scheduler.conf file ownership is set to root:root
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	scheduler.conf	file	ownership	is	set	to	root:root.	

Rationale:	

The	scheduler.conf	file	is	the	kubeconfig	file	for	the	Scheduler.	You	should	set	its	file	
ownership	to	maintain	the	integrity	of	the	file.	The	file	should	be	owned	by	root:root.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %U:%G /etc/kubernetes/scheduler.conf

Verify	that	the	ownership	is	set	to	root:root.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chown root:root /etc/kubernetes/scheduler.conf

Default	Value:

By	default,	scheduler.conf	file	ownership	is	set	to	root:root.	

References:	

1. https://kubernetes.io/docs/admin/kubeadm/	

CIS	Controls:	

40	|	P a g e 	
	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

41	|	P a g e 	
	

1.1.17 Ensure that the controller-manager.conf file permissions are set
to 644 or more restrictive (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	controller-manager.conf	file	has	permissions	of	644	or	more	restrictive.	

Rationale:	

The	controller-manager.conf	file	is	the	kubeconfig	file	for	the	Controller	Manager.	You	
should	restrict	its	file	permissions	to	maintain	the	integrity	of	the	file.	The	file	should	be	
writable	by	only	the	administrators	on	the	system.	

Impact:	

None	

Audit:	

Run	the	following	command	(based	on	the	file	location	on	your	system)	on	the	master	
node.	For	example,	

stat -c %a /etc/kubernetes/controller-manager.conf

Verify	that	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chmod 644 /etc/kubernetes/controller-manager.conf

Default	Value:

By	default,	controller-manager.conf	has	permissions	of	640.	

References:	

1. https://kubernetes.io/docs/admin/kube-controller-manager/	

42	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

43	|	P a g e 	
	

1.1.18 Ensure that the controller-manager.conf file ownership is set to
root:root (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	controller-manager.conf	file	ownership	is	set	to	root:root.	

Rationale:	

The	controller-manager.conf	file	is	the	kubeconfig	file	for	the	Controller	Manager.	You	
should	set	its	file	ownership	to	maintain	the	integrity	of	the	file.	The	file	should	be	owned	
by	root:root.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

stat -c %U:%G /etc/kubernetes/controller-manager.conf

Verify	that	the	ownership	is	set	to	root:root.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chown root:root /etc/kubernetes/controller-manager.conf

Default	Value:

By	default,	controller-manager.conf	file	ownership	is	set	to	root:root.	

References:	

1. https://kubernetes.io/docs/admin/kube-controller-manager/	

44	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

45	|	P a g e 	
	

1.1.19 Ensure that the Kubernetes PKI directory and file ownership is set
to root:root (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	Kubernetes	PKI	directory	and	file	ownership	is	set	to	root:root.	

Rationale:	

Kubernetes	makes	use	of	a	number	of	certificates	as	part	of	its	operation.	You	should	set	
the	ownership	of	the	directory	containing	the	PKI	information	and	all	files	in	that	directory	
to	maintain	their	integrity.	The	directory	and	files	should	be	owned	by	root:root.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

ls -laR /etc/kubernetes/pki/

Verify	that	the	ownership	of	all	files	and	directories	in	this	hierarchy	is	set	to	root:root.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chown -R root:root /etc/kubernetes/pki/

Default	Value:

By	default,	the	/etc/kubernetes/pki/	directory	and	all	of	the	files	and	directories	contained	
within	it,	are	set	to	be	owned	by	the	root	user.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	

46	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

47	|	P a g e 	
	

1.1.20 Ensure that the Kubernetes PKI certificate file permissions are set
to 644 or more restrictive (Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	Kubernetes	PKI	certificate	files	have	permissions	of	644	or	more	restrictive.	

Rationale:	

Kubernetes	makes	use	of	a	number	of	certificate	files	as	part	of	the	operation	of	its	
components.	The	permissions	on	these	files	should	be	set	to	644	or	more	restrictive	to	
protect	their	integrity.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

ls -laR /etc/kubernetes/pki/*.crt

Verify	that	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chmod -R 644 /etc/kubernetes/pki/*.crt

Default	Value:

By	default,	the	certificates	used	by	Kubernetes	are	set	to	have	permissions	of	644	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	

48	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

49	|	P a g e 	
	

1.1.21 Ensure that the Kubernetes PKI key file permissions are set to 600
(Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	Kubernetes	PKI	key	files	have	permissions	of	600.	

Rationale:	

Kubernetes	makes	use	of	a	number	of	key	files	as	part	of	the	operation	of	its	components.	
The	permissions	on	these	files	should	be	set	to	600	to	protect	their	integrity	and	
confidentiality.	

Impact:	

None	

Audit:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

ls -laR /etc/kubernetes/pki/*.key

Verify	that	the	permissions	are	600.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	master	node.	
For	example,	

chmod -R 600 /etc/kubernetes/pki/*.key

Default	Value:

By	default,	the	keys	used	by	Kubernetes	are	set	to	have	permissions	of	600	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	

50	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

51	|	P a g e 	
	

1.2 API Server

This	section	contains	recommendations	relating	to	API	server	configuration	flags	

1.2.1 Ensure that the --anonymous-auth argument is set to false
(Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Disable	anonymous	requests	to	the	API	server.	

Rationale:	

When	enabled,	requests	that	are	not	rejected	by	other	configured	authentication	methods	
are	treated	as	anonymous	requests.	These	requests	are	then	served	by	the	API	server.	You	
should	rely	on	authentication	to	authorize	access	and	disallow	anonymous	requests.	

If	you	are	using	RBAC	authorization,	it	is	generally	considered	reasonable	to	allow	
anonymous	access	to	the	API	Server	for	health	checks	and	discovery	purposes,	and	hence	
this	recommendation	is	not	scored.	However,	you	should	consider	whether	anonymous	
discovery	is	an	acceptable	risk	for	your	purposes.	

Impact:	

Anonymous	requests	will	be	rejected.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--anonymous-auth	argument	is	set	to	false.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	below	parameter.	

--anonymous-auth=false

52	|	P a g e 	
	

Default	Value:

By	default,	anonymous	access	is	enabled.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/authentication/#anonymous-requests	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

53	|	P a g e 	
	

1.2.2 Ensure that the --basic-auth-file argument is not set (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	use	basic	authentication.	

Rationale:	

Basic	authentication	uses	plaintext	credentials	for	authentication.	Currently,	the	basic	
authentication	credentials	last	indefinitely,	and	the	password	cannot	be	changed	without	
restarting	the	API	server.	The	basic	authentication	is	currently	supported	for	convenience.	
Hence,	basic	authentication	should	not	be	used.	

Impact:	

You	will	have	to	configure	and	use	alternate	authentication	mechanisms	such	as	tokens	and	
certificates.	Username	and	password	for	basic	authentication	could	no	longer	be	used.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--basic-auth-file	argument	does	not	exist.

Remediation:	

Follow	the	documentation	and	configure	alternate	mechanisms	for	authentication.	Then,	
edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	remove	the	--basic-auth-file=<filename>	
parameter.	

Default	Value:	

By	default,	basic	authentication	is	not	set.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/authentication/#static-password-file	

54	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 16.14	Encrypt/Hash	All	Authentication	Files	And	Monitor	Their	Access	
	 Verify	that	all	authentication	files	are	encrypted	or	hashed	and	that	these	files	cannot	be	
accessed	without	root	or	administrator	privileges.	Audit	all	access	to	password	files	in	the	
system.	

Version	7	

	 16.4	Encrypt	or	Hash	all	Authentication	Credentials	
	 Encrypt	or	hash	with	a	salt	all	authentication	credentials	when	stored.	

55	|	P a g e 	
	

1.2.3 Ensure that the --token-auth-file parameter is not set (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	use	token	based	authentication.	

Rationale:	

The	token-based	authentication	utilizes	static	tokens	to	authenticate	requests	to	the	
apiserver.	The	tokens	are	stored	in	clear-text	in	a	file	on	the	apiserver,	and	cannot	be	
revoked	or	rotated	without	restarting	the	apiserver.	Hence,	do	not	use	static	token-based	
authentication.	

Impact:	

You	will	have	to	configure	and	use	alternate	authentication	mechanisms	such	as	
certificates.	Static	token	based	authentication	could	not	be	used.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--token-auth-file	argument	does	not	exist.

Remediation:	

Follow	the	documentation	and	configure	alternate	mechanisms	for	authentication.	Then,	
edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	remove	the	--token-auth-file=<filename>	
parameter.	

Default	Value:	

By	default,	--token-auth-file	argument	is	not	set.	

References:	

1. https://kubernetes.io/docs/admin/authentication/#static-token-file	
2. https://kubernetes.io/docs/admin/kube-apiserver/	

56	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 16.14	Encrypt/Hash	All	Authentication	Files	And	Monitor	Their	Access	
	 Verify	that	all	authentication	files	are	encrypted	or	hashed	and	that	these	files	cannot	be	
accessed	without	root	or	administrator	privileges.	Audit	all	access	to	password	files	in	the	
system.	

Version	7	

	 16.4	Encrypt	or	Hash	all	Authentication	Credentials	
	 Encrypt	or	hash	with	a	salt	all	authentication	credentials	when	stored.	

57	|	P a g e 	
	

1.2.4 Ensure that the --kubelet-https argument is set to true
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Use	https	for	kubelet	connections.	

Rationale:	

Connections	from	apiserver	to	kubelets	could	potentially	carry	sensitive	data	such	as	
secrets	and	keys.	It	is	thus	important	to	use	in-transit	encryption	for	any	communication	
between	the	apiserver	and	kubelets.	

Impact:	

You	require	TLS	to	be	configured	on	apiserver	as	well	as	kubelets.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--kubelet-https	argument	either	does	not	exist	or	is	set	to	true.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	remove	the	--kubelet-https	parameter.	

Default	Value:	

By	default,	kubelet	connections	are	over	https.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/kubelet-authentication-authorization/	

CIS	Controls:	

58	|	P a g e 	
	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

59	|	P a g e 	
	

1.2.5 Ensure that the --kubelet-client-certificate and --kubelet-client-key
arguments are set as appropriate (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Enable	certificate	based	kubelet	authentication.	

Rationale:	

The	apiserver,	by	default,	does	not	authenticate	itself	to	the	kubelet's	HTTPS	endpoints.	
The	requests	from	the	apiserver	are	treated	anonymously.	You	should	set	up	certificate-
based	kubelet	authentication	to	ensure	that	the	apiserver	authenticates	itself	to	kubelets	
when	submitting	requests.	

Impact:	

You	require	TLS	to	be	configured	on	apiserver	as	well	as	kubelets.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--kubelet-client-certificate	and	--kubelet-client-key	arguments	
exist	and	they	are	set	as	appropriate.

Remediation:	

Follow	the	Kubernetes	documentation	and	set	up	the	TLS	connection	between	the	
apiserver	and	kubelets.	Then,	edit	API	server	pod	specification	file	
/etc/kubernetes/manifests/kube-apiserver.yaml	on	the	master	node	and	set	the	
kubelet	client	certificate	and	key	parameters	as	below.	

--kubelet-client-certificate=<path/to/client-certificate-file>
--kubelet-client-key=<path/to/client-key-file>

Default	Value:

By	default,	certificate-based	kubelet	authentication	is	not	set.	

60	|	P a g e 	
	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/kubelet-authentication-authorization/	
3. https://kubernetes.io/docs/concepts/cluster-administration/master-node-

communication/#apiserver---kubelet	

CIS	Controls:	

Version	6	

	 3.4	Use	Only	Secure	Channels	For	Remote	System	Administration	
	 Perform	all	remote	administration	of	servers,	workstation,	network	devices,	and	similar	
equipment	over	secure	channels.	Protocols	such	as	telnet,	VNC,	RDP,	or	others	that	do	not	
actively	support	strong	encryption	should	only	be	used	if	they	are	performed	over	a	
secondary	encryption	channel,	such	as	SSL,	TLS	or	IPSEC.	

Version	7	

	 4.5	Use	Multifactor	Authentication	For	All	Administrative	Access	
	 Use	multi-factor	authentication	and	encrypted	channels	for	all	administrative	account	
access.	

61	|	P a g e 	
	

1.2.6 Ensure that the --kubelet-certificate-authority argument is set as
appropriate (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Verify	kubelet's	certificate	before	establishing	connection.	

Rationale:	

The	connections	from	the	apiserver	to	the	kubelet	are	used	for	fetching	logs	for	pods,	
attaching	(through	kubectl)	to	running	pods,	and	using	the	kubelet’s	port-forwarding	
functionality.	These	connections	terminate	at	the	kubelet’s	HTTPS	endpoint.	By	default,	the	
apiserver	does	not	verify	the	kubelet’s	serving	certificate,	which	makes	the	connection	
subject	to	man-in-the-middle	attacks,	and	unsafe	to	run	over	untrusted	and/or	public	
networks.	

Impact:	

You	require	TLS	to	be	configured	on	apiserver	as	well	as	kubelets.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--kubelet-certificate-authority	argument	exists	and	is	set	as	
appropriate.

Remediation:	

Follow	the	Kubernetes	documentation	and	setup	the	TLS	connection	between	the	apiserver	
and	kubelets.	Then,	edit	the	API	server	pod	specification	file	
/etc/kubernetes/manifests/kube-apiserver.yaml	on	the	master	node	and	set	the	--
kubelet-certificate-authority	parameter	to	the	path	to	the	cert	file	for	the	certificate	
authority.	

--kubelet-certificate-authority=<ca-string>

Default	Value:

62	|	P a g e 	
	

By	default,	--kubelet-certificate-authority	argument	is	not	set.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/kubelet-authentication-authorization/	
3. https://kubernetes.io/docs/concepts/cluster-administration/master-node-

communication/#apiserver---kubelet	

CIS	Controls:	

Version	6	

	 3.4	Use	Only	Secure	Channels	For	Remote	System	Administration	
	 Perform	all	remote	administration	of	servers,	workstation,	network	devices,	and	similar	
equipment	over	secure	channels.	Protocols	such	as	telnet,	VNC,	RDP,	or	others	that	do	not	
actively	support	strong	encryption	should	only	be	used	if	they	are	performed	over	a	
secondary	encryption	channel,	such	as	SSL,	TLS	or	IPSEC.	

Version	7	

	 4.5	Use	Multifactor	Authentication	For	All	Administrative	Access	
	 Use	multi-factor	authentication	and	encrypted	channels	for	all	administrative	account	
access.	

63	|	P a g e 	
	

1.2.7 Ensure that the --authorization-mode argument is not set to
AlwaysAllow (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	always	authorize	all	requests.	

Rationale:	

The	API	Server,	can	be	configured	to	allow	all	requests.	This	mode	should	not	be	used	on	
any	production	cluster.	

Impact:	

Only	authorized	requests	will	be	served.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--authorization-mode	argument	exists	and	is	not	set	to	AlwaysAllow.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--authorization-mode	parameter	to	
values	other	than	AlwaysAllow.	One	such	example	could	be	as	below.	

--authorization-mode=RBAC

Default	Value:

By	default,	AlwaysAllow	is	not	enabled.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/authorization/	

64	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 9.1	Limit	Open	Ports,	Protocols,	and	Services	
	 Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

Version	7	

	 9.2	Ensure	Only	Approved	Ports,	Protocols	and	Services	Are	Running	
	 Ensure	that	only	network	ports,	protocols,	and	services	listening	on	a	system	with	
validated	business	needs,	are	running	on	each	system.	

65	|	P a g e 	
	

1.2.8 Ensure that the --authorization-mode argument includes Node
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Restrict	kubelet	nodes	to	reading	only	objects	associated	with	them.	

Rationale:	

The	Node	authorization	mode	only	allows	kubelets	to	read	Secret,	ConfigMap,	
PersistentVolume,	and	PersistentVolumeClaim	objects	associated	with	their	nodes.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--authorization-mode	argument	exists	and	is	set	to	a	value	to	include	Node.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--authorization-mode	parameter	to	a	
value	that	includes	Node.	

--authorization-mode=Node,RBAC

Default	Value:

By	default,	Node	authorization	is	not	enabled.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/authorization/node/	
3. https://github.com/kubernetes/kubernetes/pull/46076	

66	|	P a g e 	
	

4. https://acotten.com/post/kube17-security	

CIS	Controls:	

Version	6	

	 9.1	Limit	Open	Ports,	Protocols,	and	Services	
	 Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

Version	7	

	 9.2	Ensure	Only	Approved	Ports,	Protocols	and	Services	Are	Running	
	 Ensure	that	only	network	ports,	protocols,	and	services	listening	on	a	system	with	
validated	business	needs,	are	running	on	each	system.	

67	|	P a g e 	
	

1.2.9 Ensure that the --authorization-mode argument includes RBAC
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Turn	on	Role	Based	Access	Control.	

Rationale:	

Role	Based	Access	Control	(RBAC)	allows	fine-grained	control	over	the	operations	that	
different	entities	can	perform	on	different	objects	in	the	cluster.	It	is	recommended	to	use	
the	RBAC	authorization	mode.	

Impact:	

When	RBAC	is	enabled	you	will	need	to	ensure	that	appropriate	RBAC	settings	(including	
Roles,	RoleBindings	and	ClusterRoleBindings)	are	configured	to	allow	appropriate	access.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--authorization-mode	argument	exists	and	is	set	to	a	value	to	include	RBAC.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--authorization-mode	parameter	to	a	
value	that	includes	RBAC,	for	example:	

--authorization-mode=Node,RBAC

Default	Value:

By	default,	RBAC	authorization	is	not	enabled.	

References:	

1. https://kubernetes.io/docs/reference/access-authn-authz/rbac/	

68	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 9.1	Limit	Open	Ports,	Protocols,	and	Services	
	 Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

Version	7	

	 9.2	Ensure	Only	Approved	Ports,	Protocols	and	Services	Are	Running	
	 Ensure	that	only	network	ports,	protocols,	and	services	listening	on	a	system	with	
validated	business	needs,	are	running	on	each	system.	

69	|	P a g e 	
	

1.2.10 Ensure that the admission control plugin EventRateLimit is set
(Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Limit	the	rate	at	which	the	API	server	accepts	requests.	

Rationale:	

Using	EventRateLimit	admission	control	enforces	a	limit	on	the	number	of	events	that	the	
API	Server	will	accept	in	a	given	time	slice.	A	misbehaving	workload	could	overwhelm	and	
DoS	the	API	Server,	making	it	unavailable.	This	particularly	applies	to	a	multi-tenant	
cluster,	where	there	might	be	a	small	percentage	of	misbehaving	tenants	which	could	have	
a	significant	impact	on	the	performance	of	the	cluster	overall.	Hence,	it	is	recommended	to	
limit	the	rate	of	events	that	the	API	server	will	accept.	

Note:	This	is	an	Alpha	feature	in	the	Kubernetes	1.15	release.	

Impact:	

You	need	to	carefully	tune	in	limits	as	per	your	environment.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--enable-admission-plugins	argument	is	set	to	a	value	that	includes	
EventRateLimit.

Remediation:	

Follow	the	Kubernetes	documentation	and	set	the	desired	limits	in	a	configuration	file.	
Then,	edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	and	set	the	below	parameters.	

--enable-admission-plugins=...,EventRateLimit,...
--admission-control-config-file=<path/to/configuration/file>

Default	Value:

70	|	P a g e 	
	

By	default,	EventRateLimit	is	not	set.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/admission-controllers/#eventratelimit	
3. https://github.com/staebler/community/blob/9873b632f4d99b5d99c38c9b15fe2f

8b93d0a746/contributors/design-
proposals/admission_control_event_rate_limit.md	

CIS	Controls:	

Version	6	

	 8.4	Enable	Anti-exploitation	Features	(i.e.	DEP,	ASLR,	EMET)	
	 Enable	anti-exploitation	features	such	as	Data	Execution	Prevention	(DEP),	Address	
Space	Layout	Randomization	(ASLR),	virtualization/containerization,	etc.	For	increased	
protection,	deploy	capabilities	such	as	Enhanced	Mitigation	Experience	Toolkit	(EMET)	
that	can	be	configured	to	apply	these	protections	to	a	broader	set	of	applications	and	
executables.	

Version	7	

	 8.3	Enable	Operating	System	Anti-Exploitation	Features/	Deploy	Anti-Exploit	
Technologies	
	 Enable	anti-exploitation	features	such	as	Data	Execution	Prevention	(DEP)	or	Address	
Space	Layout	Randomization	(ASLR)	that	are	available	in	an	operating	system	or	deploy	
appropriate	toolkits	that	can	be	configured	to	apply	protection	to	a	broader	set	of	
applications	and	executables.	

71	|	P a g e 	
	

1.2.11 Ensure that the admission control plugin AlwaysAdmit is not set
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	allow	all	requests.	

Rationale:	

Setting	admission	control	plugin	AlwaysAdmit	allows	all	requests	and	do	not	filter	any	
requests.	

The	AlwaysAdmit	admission	controller	was	deprecated	in	Kubernetes	v1.13.	Its	behavior	
was	equivalent	to	turning	off	all	admission	controllers.	

Impact:	

Only	requests	explicitly	allowed	by	the	admissions	control	plugins	would	be	served.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	if	the	--enable-admission-plugins	argument	is	set,	its	value	does	not	include	
AlwaysAdmit.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	either	remove	the	--enable-admission-plugins	
parameter,	or	set	it	to	a	value	that	does	not	include	AlwaysAdmit.	

Default	Value:	

AlwaysAdmit	is	not	in	the	list	of	default	admission	plugins.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	

72	|	P a g e 	
	

2. https://kubernetes.io/docs/admin/admission-controllers/#alwaysadmit	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

73	|	P a g e 	
	

1.2.12 Ensure that the admission control plugin AlwaysPullImages is set
(Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Always	pull	images.	

Rationale:	

Setting	admission	control	policy	to	AlwaysPullImages	forces	every	new	pod	to	pull	the	
required	images	every	time.	In	a	multi-tenant	cluster	users	can	be	assured	that	their	
private	images	can	only	be	used	by	those	who	have	the	credentials	to	pull	them.	Without	
this	admission	control	policy,	once	an	image	has	been	pulled	to	a	node,	any	pod	from	any	
user	can	use	it	simply	by	knowing	the	image’s	name,	without	any	authorization	check	
against	the	image	ownership.	When	this	plug-in	is	enabled,	images	are	always	pulled	prior	
to	starting	containers,	which	means	valid	credentials	are	required.	

Impact:	

Credentials	would	be	required	to	pull	the	private	images	every	time.	Also,	in	trusted	
environments,	this	might	increases	load	on	network,	registry,	and	decreases	speed.	

This	setting	could	impact	offline	or	isolated	clusters,	which	have	images	pre-loaded	and	do	
not	have	access	to	a	registry	to	pull	in-use	images.	This	setting	is	not	appropriate	for	
clusters	which	use	this	configuration.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--enable-admission-plugins	argument	is	set	to	a	value	that	includes	
AlwaysPullImages.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--enable-admission-plugins	parameter	
to	include	AlwaysPullImages.	

74	|	P a g e 	
	

--enable-admission-plugins=...,AlwaysPullImages,...

Default	Value:

By	default,	AlwaysPullImages	is	not	set.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/admission-controllers/#alwayspullimages	

CIS	Controls:	

Version	6	

	 14.4	Protect	Information	With	Access	Control	Lists	
	 All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

Version	7	

	 14.6	Protect	Information	through	Access	Control	Lists	
	 Protect	all	information	stored	on	systems	with	file	system,	network	share,	claims,	
application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

75	|	P a g e 	
	

1.2.13 Ensure that the admission control plugin SecurityContextDeny is
set if PodSecurityPolicy is not used (Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

The	SecurityContextDeny	admission	controller	can	be	used	to	deny	pods	which	make	use	of	
some	SecurityContext	fields	which	could	allow	for	privilege	escalation	in	the	cluster.	This	
should	be	used	where	PodSecurityPolicy	is	not	in	place	within	the	cluster.	

Rationale:	

SecurityContextDeny	can	be	used	to	provide	a	layer	of	security	for	clusters	which	do	not	
have	PodSecurityPolicies	enabled.	

Impact:	

This	admission	controller	should	only	be	used	where	Pod	Security	Policies	cannot	be	used	
on	the	cluster,	as	it	can	interact	poorly	with	certain	Pod	Security	Policies	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--enable-admission-plugins	argument	is	set	to	a	value	that	includes	
SecurityContextDeny,	if	PodSecurityPolicy	is	not	included.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--enable-admission-plugins	parameter	
to	include	SecurityContextDeny,	unless	PodSecurityPolicy	is	already	in	place.	

--enable-admission-plugins=...,SecurityContextDeny,...

Default	Value:

By	default,	SecurityContextDeny	is	not	set.	

References:	

76	|	P a g e 	
	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/admission-controllers/#securitycontextdeny	
3. https://kubernetes.io/docs/user-guide/pod-security-policy/#working-with-rbac	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

77	|	P a g e 	
	

1.2.14 Ensure that the admission control plugin ServiceAccount is set
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Automate	service	accounts	management.	

Rationale:	

When	you	create	a	pod,	if	you	do	not	specify	a	service	account,	it	is	automatically	assigned	
the	default	service	account	in	the	same	namespace.	You	should	create	your	own	service	
account	and	let	the	API	server	manage	its	security	tokens.	

Impact:	

None.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--disable-admission-plugins	argument	is	set	to	a	value	that	does	not	
includes	ServiceAccount.

Remediation:	

Follow	the	documentation	and	create	ServiceAccount	objects	as	per	your	environment.	
Then,	edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	ensure	that	the	--disable-admission-plugins	
parameter	is	set	to	a	value	that	does	not	include	ServiceAccount.	

Default	Value:	

By	default,	ServiceAccount	is	set.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/admission-controllers/#serviceaccount	

78	|	P a g e 	
	

3. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/	

CIS	Controls:	

Version	6	

	 16	Account	Monitoring	and	Control	
	 Account	Monitoring	and	Control	

79	|	P a g e 	
	

1.2.15 Ensure that the admission control plugin NamespaceLifecycle is
set (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Reject	creating	objects	in	a	namespace	that	is	undergoing	termination.	

Rationale:	

Setting	admission	control	policy	to	NamespaceLifecycle	ensures	that	objects	cannot	be	
created	in	non-existent	namespaces,	and	that	namespaces	undergoing	termination	are	not	
used	for	creating	the	new	objects.	This	is	recommended	to	enforce	the	integrity	of	the	
namespace	termination	process	and	also	for	the	availability	of	the	newer	objects.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--disable-admission-plugins	argument	is	set	to	a	value	that	does	not	
include	NamespaceLifecycle.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--disable-admission-plugins	parameter	
to	ensure	it	does	not	include	NamespaceLifecycle.	

Default	Value:	

By	default,	NamespaceLifecycle	is	set.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/admission-controllers/#namespacelifecycle	

80	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

81	|	P a g e 	
	

1.2.16 Ensure that the admission control plugin PodSecurityPolicy is set
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Reject	creating	pods	that	do	not	match	Pod	Security	Policies.	

Rationale:	

A	Pod	Security	Policy	is	a	cluster-level	resource	that	controls	the	actions	that	a	pod	can	
perform	and	what	it	has	the	ability	to	access.	The	PodSecurityPolicy	objects	define	a	set	of	
conditions	that	a	pod	must	run	with	in	order	to	be	accepted	into	the	system.	Pod	Security	
Policies	are	comprised	of	settings	and	strategies	that	control	the	security	features	a	pod	has	
access	to	and	hence	this	must	be	used	to	control	pod	access	permissions.	

Note:	When	the	PodSecurityPolicy	admission	plugin	is	in	use,	there	needs	to	be	at	least	one	
PodSecurityPolicy	in	place	for	ANY	pods	to	be	admitted.	See	section	5.2	for	
recommendations	on	PodSecurityPolicy	settings.	

Impact:	

The	policy	objects	must	be	created	and	granted	before	pod	creation	would	be	allowed.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--enable-admission-plugins	argument	is	set	to	a	value	that	includes	
PodSecurityPolicy.

Remediation:	

Follow	the	documentation	and	create	Pod	Security	Policy	objects	as	per	your	environment.	
Then,	edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--enable-admission-plugins	parameter	
to	a	value	that	includes	PodSecurityPolicy:	

--enable-admission-plugins=...,PodSecurityPolicy,...

82	|	P a g e 	
	

Then	restart	the	API	Server.

Default	Value:	

By	default,	PodSecurityPolicy	is	not	set.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/admission-controllers/#podsecuritypolicy	
3. https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-

security-policies	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

83	|	P a g e 	
	

1.2.17 Ensure that the admission control plugin NodeRestriction is set
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Limit	the	Node	and	Pod	objects	that	a	kubelet	could	modify.	

Rationale:	

Using	the	NodeRestriction	plug-in	ensures	that	the	kubelet	is	restricted	to	the	Node	and	
Pod	objects	that	it	could	modify	as	defined.	Such	kubelets	will	only	be	allowed	to	modify	
their	own	Node	API	object,	and	only	modify	Pod	API	objects	that	are	bound	to	their	node.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--enable-admission-plugins	argument	is	set	to	a	value	that	includes	
NodeRestriction.

Remediation:	

Follow	the	Kubernetes	documentation	and	configure	NodeRestriction	plug-in	on	kubelets.	
Then,	edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--enable-admission-plugins	parameter	
to	a	value	that	includes	NodeRestriction.	

--enable-admission-plugins=...,NodeRestriction,...

Default	Value:

By	default,	NodeRestriction	is	not	set.	

References:	

84	|	P a g e 	
	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/admin/admission-controllers/#noderestriction	
3. https://kubernetes.io/docs/admin/authorization/node/	
4. https://acotten.com/post/kube17-security	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

85	|	P a g e 	
	

1.2.18 Ensure that the --insecure-bind-address argument is not set
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	bind	the	insecure	API	service.	

Rationale:	

If	you	bind	the	apiserver	to	an	insecure	address,	basically	anyone	who	could	connect	to	it	
over	the	insecure	port,	would	have	unauthenticated	and	unencrypted	access	to	your	
master	node.	The	apiserver	doesn't	do	any	authentication	checking	for	insecure	binds	and	
traffic	to	the	Insecure	API	port	is	not	encrpyted,	allowing	attackers	to	potentially	read	
sensitive	data	in	transit.	

Impact:	

Connections	to	the	API	server	will	require	valid	authentication	credentials.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--insecure-bind-address	argument	does	not	exist.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	remove	the	--insecure-bind-address	
parameter.	

Default	Value:	

By	default,	the	insecure	bind	address	is	not	set.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	

86	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 9.1	Limit	Open	Ports,	Protocols,	and	Services	
	 Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

Version	7	

	 9.2	Ensure	Only	Approved	Ports,	Protocols	and	Services	Are	Running	
	 Ensure	that	only	network	ports,	protocols,	and	services	listening	on	a	system	with	
validated	business	needs,	are	running	on	each	system.	

87	|	P a g e 	
	

1.2.19 Ensure that the --insecure-port argument is set to 0 (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	bind	to	insecure	port.	

Rationale:	

Setting	up	the	apiserver	to	serve	on	an	insecure	port	would	allow	unauthenticated	and	
unencrypted	access	to	your	master	node.	This	would	allow	attackers	who	could	access	this	
port,	to	easily	take	control	of	the	cluster.	

Impact:	

All	components	that	use	the	API	must	connect	via	the	secured	port,	authenticate	
themselves,	and	be	authorized	to	use	the	API.	

This	includes:	

• kube-controller-manager	
• kube-proxy	
• kube-scheduler	
• kubelets	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--insecure-port	argument	is	set	to	0.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	below	parameter.	

--insecure-port=0

Default	Value:

By	default,	the	insecure	port	is	set	to	8080.	

88	|	P a g e 	
	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	

CIS	Controls:	

Version	6	

	 9.1	Limit	Open	Ports,	Protocols,	and	Services	
	 Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

Version	7	

	 9.2	Ensure	Only	Approved	Ports,	Protocols	and	Services	Are	Running	
	 Ensure	that	only	network	ports,	protocols,	and	services	listening	on	a	system	with	
validated	business	needs,	are	running	on	each	system.	

89	|	P a g e 	
	

1.2.20 Ensure that the --secure-port argument is not set to 0
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	disable	the	secure	port.	

Rationale:	

The	secure	port	is	used	to	serve	https	with	authentication	and	authorization.	If	you	disable	
it,	no	https	traffic	is	served	and	all	traffic	is	served	unencrypted.	

Impact:	

You	need	to	set	the	API	Server	up	with	the	right	TLS	certificates.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--secure-port	argument	is	either	not	set	or	is	set	to	an	integer	value	
between	1	and	65535.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	either	remove	the	--secure-port	parameter	or	
set	it	to	a	different	(non-zero)	desired	port.	

Default	Value:	

By	default,	port	6443	is	used	as	the	secure	port.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	

CIS	Controls:	

90	|	P a g e 	
	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

91	|	P a g e 	
	

1.2.21 Ensure that the --profiling argument is set to false (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Disable	profiling,	if	not	needed.	

Rationale:	

Profiling	allows	for	the	identification	of	specific	performance	bottlenecks.	It	generates	a	
significant	amount	of	program	data	that	could	potentially	be	exploited	to	uncover	system	
and	program	details.	If	you	are	not	experiencing	any	bottlenecks	and	do	not	need	the	
profiler	for	troubleshooting	purposes,	it	is	recommended	to	turn	it	off	to	reduce	the	
potential	attack	surface.	

Impact:	

Profiling	information	would	not	be	available.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--profiling	argument	is	set	to	false.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	below	parameter.	

--profiling=false

Default	Value:

By	default,	profiling	is	enabled.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://github.com/kubernetes/community/blob/master/contributors/devel/profi

ling.md	

92	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

93	|	P a g e 	
	

1.2.22 Ensure that the --audit-log-path argument is set (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Enable	auditing	on	the	Kubernetes	API	Server	and	set	the	desired	audit	log	path.	

Rationale:	

Auditing	the	Kubernetes	API	Server	provides	a	security-relevant	chronological	set	of	
records	documenting	the	sequence	of	activities	that	have	affected	system	by	individual	
users,	administrators	or	other	components	of	the	system.	Even	though	currently,	
Kubernetes	provides	only	basic	audit	capabilities,	it	should	be	enabled.	You	can	enable	it	by	
setting	an	appropriate	audit	log	path.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--audit-log-path	argument	is	set	as	appropriate.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--audit-log-path	parameter	to	a	suitable	
path	and	file	where	you	would	like	audit	logs	to	be	written,	for	example:	

--audit-log-path=/var/log/apiserver/audit.log

Default	Value:

By	default,	auditing	is	not	enabled.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	

94	|	P a g e 	
	

2. https://kubernetes.io/docs/concepts/cluster-administration/audit/	
3. https://github.com/kubernetes/features/issues/22	

CIS	Controls:	

Version	6	

	 6.2	Ensure	Audit	Log	Settings	Support	Appropriate	Log	Entry	Formatting	
	 Validate	audit	log	settings	for	each	hardware	device	and	the	software	installed	on	it,	
ensuring	that	logs	include	a	date,	timestamp,	source	addresses,	destination	addresses,	and	
various	other	useful	elements	of	each	packet	and/or	transaction.	Systems	should	record	
logs	in	a	standardized	format	such	as	syslog	entries	or	those	outlined	by	the	Common	Event	
Expression	initiative.	If	systems	cannot	generate	logs	in	a	standardized	format,	log	
normalization	tools	can	be	deployed	to	convert	logs	into	such	a	format.	

Version	7	

	 6.2	Activate	audit	logging	
	 Ensure	that	local	logging	has	been	enabled	on	all	systems	and	networking	devices.	

	 6.3	Enable	Detailed	Logging	
	 Enable	system	logging	to	include	detailed	information	such	as	an	event	source,	date,	
user,	timestamp,	source	addresses,	destination	addresses,	and	other	useful	elements.	

95	|	P a g e 	
	

1.2.23 Ensure that the --audit-log-maxage argument is set to 30 or as
appropriate (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Retain	the	logs	for	at	least	30	days	or	as	appropriate.	

Rationale:	

Retaining	logs	for	at	least	30	days	ensures	that	you	can	go	back	in	time	and	investigate	or	
correlate	any	events.	Set	your	audit	log	retention	period	to	30	days	or	as	per	your	business	
requirements.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--audit-log-maxage	argument	is	set	to	30	or	as	appropriate.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--audit-log-maxage	parameter	to	30	or	
as	an	appropriate	number	of	days:	

--audit-log-maxage=30

Default	Value:

By	default,	auditing	is	not	enabled.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/concepts/cluster-administration/audit/	

96	|	P a g e 	
	

3. https://github.com/kubernetes/features/issues/22	

CIS	Controls:	

Version	6	

	 6.3	Ensure	Audit	Logging	Systems	Are	Not	Subject	To	Loss	(i.e.	rotation/archive)	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated	on	a	regular	basis,	so	that	log	files	will	not	fill	up	between	log	rotation	intervals.	
The	logs	must	be	archived	and	digitally	signed	on	a	periodic	basis.	

Version	7	

	 6.4	Ensure	adequate	storage	for	logs	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated.	

97	|	P a g e 	
	

1.2.24 Ensure that the --audit-log-maxbackup argument is set to 10 or
as appropriate (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Retain	10	or	an	appropriate	number	of	old	log	files.	

Rationale:	

Kubernetes	automatically	rotates	the	log	files.	Retaining	old	log	files	ensures	that	you	
would	have	sufficient	log	data	available	for	carrying	out	any	investigation	or	correlation.	
For	example,	if	you	have	set	file	size	of	100	MB	and	the	number	of	old	log	files	to	keep	as	
10,	you	would	approximate	have	1	GB	of	log	data	that	you	could	potentially	use	for	your	
analysis.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--audit-log-maxbackup	argument	is	set	to	10	or	as	appropriate.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--audit-log-maxbackup	parameter	to	10	
or	to	an	appropriate	value.	

--audit-log-maxbackup=10

Default	Value:

By	default,	auditing	is	not	enabled.	

References:	

98	|	P a g e 	
	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://kubernetes.io/docs/concepts/cluster-administration/audit/	
3. https://github.com/kubernetes/features/issues/22	

CIS	Controls:	

Version	6	

	 6.3	Ensure	Audit	Logging	Systems	Are	Not	Subject	To	Loss	(i.e.	rotation/archive)	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated	on	a	regular	basis,	so	that	log	files	will	not	fill	up	between	log	rotation	intervals.	
The	logs	must	be	archived	and	digitally	signed	on	a	periodic	basis.	

Version	7	

	 6.4	Ensure	adequate	storage	for	logs	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated.	

99	|	P a g e 	
	

1.2.25 Ensure that the --audit-log-maxsize argument is set to 100 or as
appropriate (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Rotate	log	files	on	reaching	100	MB	or	as	appropriate.	

Rationale:	

Kubernetes	automatically	rotates	the	log	files.	Retaining	old	log	files	ensures	that	you	
would	have	sufficient	log	data	available	for	carrying	out	any	investigation	or	correlation.	If	
you	have	set	file	size	of	100	MB	and	the	number	of	old	log	files	to	keep	as	10,	you	would	
approximate	have	1	GB	of	log	data	that	you	could	potentially	use	for	your	analysis.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--audit-log-maxsize	argument	is	set	to	100	or	as	appropriate.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--audit-log-maxsize	parameter	to	an	
appropriate	size	in	MB.	For	example,	to	set	it	as	100	MB:	

--audit-log-maxsize=100

Default	Value:

By	default,	auditing	is	not	enabled.	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	

100	|	P a g e 	
	

2. https://kubernetes.io/docs/concepts/cluster-administration/audit/	
3. https://github.com/kubernetes/features/issues/22	

CIS	Controls:	

Version	6	

	 6.3	Ensure	Audit	Logging	Systems	Are	Not	Subject	To	Loss	(i.e.	rotation/archive)	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated	on	a	regular	basis,	so	that	log	files	will	not	fill	up	between	log	rotation	intervals.	
The	logs	must	be	archived	and	digitally	signed	on	a	periodic	basis.	

Version	7	

	 6.4	Ensure	adequate	storage	for	logs	
	 Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated.	

101	|	P a g e 	
	

1.2.26 Ensure that the --request-timeout argument is set as appropriate
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Set	global	request	timeout	for	API	server	requests	as	appropriate.	

Rationale:	

Setting	global	request	timeout	allows	extending	the	API	server	request	timeout	limit	to	a	
duration	appropriate	to	the	user's	connection	speed.	By	default,	it	is	set	to	60	seconds	
which	might	be	problematic	on	slower	connections	making	cluster	resources	inaccessible	
once	the	data	volume	for	requests	exceeds	what	can	be	transmitted	in	60	seconds.	But,	
setting	this	timeout	limit	to	be	too	large	can	exhaust	the	API	server	resources	making	it	
prone	to	Denial-of-Service	attack.	Hence,	it	is	recommended	to	set	this	limit	as	appropriate	
and	change	the	default	limit	of	60	seconds	only	if	needed.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--request-timeout	argument	is	either	not	set	or	set	to	an	appropriate	
value.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	and	set	the	below	parameter	as	appropriate	and	if	needed.	For	example,	

--request-timeout=300s

Default	Value:

By	default,	--request-timeout	is	set	to	60	seconds.	

102	|	P a g e 	
	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://github.com/kubernetes/kubernetes/pull/51415	

CIS	Controls:	

Version	6	

	 14.6	Enforce	Detailed	Audit	Logging	For	Sensitive	Information	
	 Enforce	detailed	audit	logging	for	access	to	nonpublic	data	and	special	authentication	for	
sensitive	data.	

Version	7	

	 14.9	Enforce	Detail	Logging	for	Access	or	Changes	to	Sensitive	Data	
	 Enforce	detailed	audit	logging	for	access	to	sensitive	data	or	changes	to	sensitive	data	
(utilizing	tools	such	as	File	Integrity	Monitoring	or	Security	Information	and	Event	
Monitoring).	

103	|	P a g e 	
	

1.2.27 Ensure that the --service-account-lookup argument is set to true
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Validate	service	account	before	validating	token.	

Rationale:	

If	--service-account-lookup	is	not	enabled,	the	apiserver	only	verifies	that	the	
authentication	token	is	valid,	and	does	not	validate	that	the	service	account	token	
mentioned	in	the	request	is	actually	present	in	etcd.	This	allows	using	a	service	account	
token	even	after	the	corresponding	service	account	is	deleted.	This	is	an	example	of	time	of	
check	to	time	of	use	security	issue.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	if	the	--service-account-lookup	argument	exists	it	is	set	to	true.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	below	parameter.	

--service-account-lookup=true

Alternatively,	you	can	delete	the	--service-account-lookup	parameter	from	this	file	so	
that	the	default	takes	effect.

Default	Value:	

By	default,	--service-account-lookup	argument	is	set	to	true.	

104	|	P a g e 	
	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://github.com/kubernetes/kubernetes/issues/24167	
3. https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use	

CIS	Controls:	

Version	6	

	 16	Account	Monitoring	and	Control	
	 Account	Monitoring	and	Control	

105	|	P a g e 	
	

1.2.28 Ensure that the --service-account-key-file argument is set as
appropriate (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Explicitly	set	a	service	account	public	key	file	for	service	accounts	on	the	apiserver.	

Rationale:	

By	default,	if	no	--service-account-key-file	is	specified	to	the	apiserver,	it	uses	the	
private	key	from	the	TLS	serving	certificate	to	verify	service	account	tokens.	To	ensure	that	
the	keys	for	service	account	tokens	could	be	rotated	as	needed,	a	separate	public/private	
key	pair	should	be	used	for	signing	service	account	tokens.	Hence,	the	public	key	should	be	
specified	to	the	apiserver	with	--service-account-key-file.	

Impact:	

The	corresponding	private	key	must	be	provided	to	the	controller	manager.	You	would	
need	to	securely	maintain	the	key	file	and	rotate	the	keys	based	on	your	organization's	key	
rotation	policy.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--service-account-key-file	argument	exists	and	is	set	as	appropriate.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	--service-account-key-file	parameter	
to	the	public	key	file	for	service	accounts:	

--service-account-key-file=<filename>

Default	Value:

By	default,	--service-account-key-file	argument	is	not	set.	

106	|	P a g e 	
	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://github.com/kubernetes/kubernetes/issues/24167	

CIS	Controls:	

Version	6	

	 3	Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	
	 Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	

107	|	P a g e 	
	

1.2.29 Ensure that the --etcd-certfile and --etcd-keyfile arguments are
set as appropriate (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

etcd	should	be	configured	to	make	use	of	TLS	encryption	for	client	connections.	

Rationale:	

etcd	is	a	highly-available	key	value	store	used	by	Kubernetes	deployments	for	persistent	
storage	of	all	of	its	REST	API	objects.	These	objects	are	sensitive	in	nature	and	should	be	
protected	by	client	authentication.	This	requires	the	API	server	to	identify	itself	to	the	etcd	
server	using	a	client	certificate	and	key.	

Impact:	

TLS	and	client	certificate	authentication	must	be	configured	for	etcd.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--etcd-certfile	and	--etcd-keyfile	arguments	exist	and	they	are	set	as	
appropriate.

Remediation:	

Follow	the	Kubernetes	documentation	and	set	up	the	TLS	connection	between	the	
apiserver	and	etcd.	Then,	edit	the	API	server	pod	specification	file	
/etc/kubernetes/manifests/kube-apiserver.yaml	on	the	master	node	and	set	the	etcd	
certificate	and	key	file	parameters.	

--etcd-certfile=<path/to/client-certificate-file>
--etcd-keyfile=<path/to/client-key-file>

Default	Value:

By	default,	--etcd-certfile	and	--etcd-keyfile	arguments	are	not	set	

108	|	P a g e 	
	

References:	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://coreos.com/etcd/docs/latest/op-guide/security.html	

CIS	Controls:	

Version	6	

	 9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	
	 Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

109	|	P a g e 	
	

1.2.30 Ensure that the --tls-cert-file and --tls-private-key-file arguments
are set as appropriate (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Setup	TLS	connection	on	the	API	server.	

Rationale:	

API	server	communication	contains	sensitive	parameters	that	should	remain	encrypted	in	
transit.	Configure	the	API	server	to	serve	only	HTTPS	traffic.	

Impact:	

TLS	and	client	certificate	authentication	must	be	configured	for	your	Kubernetes	cluster	
deployment.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--tls-cert-file	and	--tls-private-key-file	arguments	exist	and	they	
are	set	as	appropriate.

Remediation:	

Follow	the	Kubernetes	documentation	and	set	up	the	TLS	connection	on	the	apiserver.	
Then,	edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	TLS	certificate	and	private	key	file	
parameters.	

--tls-cert-file=<path/to/tls-certificate-file>
--tls-private-key-file=<path/to/tls-key-file>

Default	Value:

By	default,	--tls-cert-file	and	--tls-private-key-file	arguments	are	not	set.	

References:	

110	|	P a g e 	
	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. http://rootsquash.com/2016/05/10/securing-the-kubernetes-api/	
3. https://github.com/kelseyhightower/docker-kubernetes-tls-guide	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

111	|	P a g e 	
	

1.2.31 Ensure that the --client-ca-file argument is set as appropriate
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Setup	TLS	connection	on	the	API	server.	

Rationale:	

API	server	communication	contains	sensitive	parameters	that	should	remain	encrypted	in	
transit.	Configure	the	API	server	to	serve	only	HTTPS	traffic.	If	--client-ca-file	
argument	is	set,	any	request	presenting	a	client	certificate	signed	by	one	of	the	authorities	
in	the	client-ca-file	is	authenticated	with	an	identity	corresponding	to	the	
CommonName	of	the	client	certificate.	

Impact:	

TLS	and	client	certificate	authentication	must	be	configured	for	your	Kubernetes	cluster	
deployment.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--client-ca-file	argument	exists	and	it	is	set	as	appropriate.

Remediation:	

Follow	the	Kubernetes	documentation	and	set	up	the	TLS	connection	on	the	apiserver.	
Then,	edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-
apiserver.yaml	on	the	master	node	and	set	the	client	certificate	authority	file.	

--client-ca-file=<path/to/client-ca-file>

Default	Value:

By	default,	--client-ca-file	argument	is	not	set.	

References:	

112	|	P a g e 	
	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. http://rootsquash.com/2016/05/10/securing-the-kubernetes-api/	
3. https://github.com/kelseyhightower/docker-kubernetes-tls-guide	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

113	|	P a g e 	
	

1.2.32 Ensure that the --etcd-cafile argument is set as appropriate
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

etcd	should	be	configured	to	make	use	of	TLS	encryption	for	client	connections.	

Rationale:	

etcd	is	a	highly-available	key	value	store	used	by	Kubernetes	deployments	for	persistent	
storage	of	all	of	its	REST	API	objects.	These	objects	are	sensitive	in	nature	and	should	be	
protected	by	client	authentication.	This	requires	the	API	server	to	identify	itself	to	the	etcd	
server	using	a	SSL	Certificate	Authority	file.	

Impact:	

TLS	and	client	certificate	authentication	must	be	configured	for	etcd.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--etcd-cafile	argument	exists	and	it	is	set	as	appropriate.

Remediation:	

Follow	the	Kubernetes	documentation	and	set	up	the	TLS	connection	between	the	
apiserver	and	etcd.	Then,	edit	the	API	server	pod	specification	file	
/etc/kubernetes/manifests/kube-apiserver.yaml	on	the	master	node	and	set	the	etcd	
certificate	authority	file	parameter.	

--etcd-cafile=<path/to/ca-file>

Default	Value:

By	default,	--etcd-cafile	is	not	set.	

References:	

114	|	P a g e 	
	

1. https://kubernetes.io/docs/admin/kube-apiserver/	
2. https://coreos.com/etcd/docs/latest/op-guide/security.html	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

115	|	P a g e 	
	

1.2.33 Ensure that the --encryption-provider-config argument is set as
appropriate (Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Encrypt	etcd	key-value	store.	

Rationale:	

etcd	is	a	highly	available	key-value	store	used	by	Kubernetes	deployments	for	persistent	
storage	of	all	of	its	REST	API	objects.	These	objects	are	sensitive	in	nature	and	should	be	
encrypted	at	rest	to	avoid	any	disclosures.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--encryption-provider-config	argument	is	set	to	a	EncryptionConfig	file.	
Additionally,	ensure	that	the	EncryptionConfig	file	has	all	the	desired	resources	covered	
especially	any	secrets.

Remediation:	

Follow	the	Kubernetes	documentation	and	configure	a	EncryptionConfig	file.	Then,	edit	
the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-apiserver.yaml	
on	the	master	node	and	set	the	--encryption-provider-config	parameter	to	the	path	of	
that	file:	

--encryption-provider-config=</path/to/EncryptionConfig/File>

Default	Value:

By	default,	--encryption-provider-config	is	not	set.	

References:	

116	|	P a g e 	
	

1. https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/	
2. https://acotten.com/post/kube17-security	
3. https://kubernetes.io/docs/admin/kube-apiserver/	
4. https://github.com/kubernetes/features/issues/92	

CIS	Controls:	

Version	6	

	 14.5	Encrypt	At	Rest	Sensitive	Information	
	 Sensitive	information	stored	on	systems	shall	be	encrypted	at	rest	and	require	a	
secondary	authentication	mechanism,	not	integrated	into	the	operating	system,	in	order	to	
access	the	information.	

Version	7	

	 14.8	Encrypt	Sensitive	Information	at	Rest	
	 Encrypt	all	sensitive	information	at	rest	using	a	tool	that	requires	a	secondary	
authentication	mechanism	not	integrated	into	the	operating	system,	in	order	to	access	the	
information.	

117	|	P a g e 	
	

1.2.34 Ensure that encryption providers are appropriately configured
(Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Where	etcd	encryption	is	used,	appropriate	providers	should	be	configured.	

Rationale:	

Where	etcd	encryption	is	used,	it	is	important	to	ensure	that	the	appropriate	set	of	
encryption	providers	is	used.	Currently,	the	aescbc,	kms	and	secretbox	are	likely	to	be	
appropriate	options.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Get	the	EncryptionConfig	file	set	for	--encryption-provider-config	argument.	Verify	
that	aescbc,	kms	or	secretbox	is	set	as	the	encryption	provider	for	all	the	desired	
resources.

Remediation:	

Follow	the	Kubernetes	documentation	and	configure	a	EncryptionConfig	file.	In	this	file,	
choose	aescbc,	kms	or	secretbox	as	the	encryption	provider.	

Default	Value:	

By	default,	no	encryption	provider	is	set.	

References:	

1. https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/	
2. https://acotten.com/post/kube17-security	
3. https://kubernetes.io/docs/admin/kube-apiserver/	

118	|	P a g e 	
	

4. https://github.com/kubernetes/features/issues/92	
5. https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/#providers	

CIS	Controls:	

Version	6	

	 14.5	Encrypt	At	Rest	Sensitive	Information	
	 Sensitive	information	stored	on	systems	shall	be	encrypted	at	rest	and	require	a	
secondary	authentication	mechanism,	not	integrated	into	the	operating	system,	in	order	to	
access	the	information.	

Version	7	

	 14.8	Encrypt	Sensitive	Information	at	Rest	
	 Encrypt	all	sensitive	information	at	rest	using	a	tool	that	requires	a	secondary	
authentication	mechanism	not	integrated	into	the	operating	system,	in	order	to	access	the	
information.	

119	|	P a g e 	
	

1.2.35 Ensure that the API Server only makes use of Strong
Cryptographic Ciphers (Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Ensure	that	the	API	server	is	configured	to	only	use	strong	cryptographic	ciphers.	

Rationale:	

TLS	ciphers	have	had	a	number	of	known	vulnerabilities	and	weaknesses,	which	can	
reduce	the	protection	provided	by	them.	By	default	Kubernetes	supports	a	number	of	TLS	
ciphersuites	including	some	that	have	security	concerns,	weakening	the	protection	
provided.	

Impact:	

API	server	clients	that	cannot	support	modern	cryptographic	ciphers	will	not	be	able	to	
make	connections	to	the	API	server.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-apiserver

Verify	that	the	--tls-cipher-suites	argument	is	set	as	outlined	in	the	remediation	
procedure	below.

Remediation:	

Edit	the	API	server	pod	specification	file	/etc/kubernetes/manifests/kube-apiserver.yaml	
on	the	master	node	and	set	the	below	parameter.	

--tls-cipher-
suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM
_SHA256,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_RSA_WITH_AES_256_GCM
_SHA384,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_ECDSA_WITH_AES_256_GCM
_SHA384

Default	Value:

By	default	the	Kubernetes	API	server	supports	a	wide	range	of	TLS	ciphers	

120	|	P a g e 	
	

References:	

1. https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-
Practices#23-use-secure-cipher-suites	

Additional	Information:	

The	list	chosen	above	should	be	fine	for	modern	clients.	It's	essentially	the	list	from	the	
Mozilla	"Modern	cipher"	option	with	the	ciphersuites	supporting	CBC	mode	removed,	as	
CBC	has	traditionally	had	a	lot	of	issues	

CIS	Controls:	

Version	6	

	 3.4	Use	Only	Secure	Channels	For	Remote	System	Administration	
	 Perform	all	remote	administration	of	servers,	workstation,	network	devices,	and	similar	
equipment	over	secure	channels.	Protocols	such	as	telnet,	VNC,	RDP,	or	others	that	do	not	
actively	support	strong	encryption	should	only	be	used	if	they	are	performed	over	a	
secondary	encryption	channel,	such	as	SSL,	TLS	or	IPSEC.	

Version	7	

	 4.5	Use	Multifactor	Authentication	For	All	Administrative	Access	
	 Use	multi-factor	authentication	and	encrypted	channels	for	all	administrative	account	
access.	

121	|	P a g e 	
	

1.3 Controller Manager

This	section	contains	recommendations	relating	to	Controller	Manager	configuration	flags	

1.3.1 Ensure that the --terminated-pod-gc-threshold argument is set as
appropriate (Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Activate	garbage	collector	on	pod	termination,	as	appropriate.	

Rationale:	

Garbage	collection	is	important	to	ensure	sufficient	resource	availability	and	avoiding	
degraded	performance	and	availability.	In	the	worst	case,	the	system	might	crash	or	just	be	
unusable	for	a	long	period	of	time.	The	current	setting	for	garbage	collection	is	12,500	
terminated	pods	which	might	be	too	high	for	your	system	to	sustain.	Based	on	your	system	
resources	and	tests,	choose	an	appropriate	threshold	value	to	activate	garbage	collection.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-controller-manager

Verify	that	the	--terminated-pod-gc-threshold	argument	is	set	as	appropriate.

Remediation:	

Edit	the	Controller	Manager	pod	specification	file	/etc/kubernetes/manifests/kube-
controller-manager.yaml	on	the	master	node	and	set	the	--terminated-pod-gc-
threshold	to	an	appropriate	threshold,	for	example:	

--terminated-pod-gc-threshold=10

Default	Value:

122	|	P a g e 	
	

By	default,	--terminated-pod-gc-threshold	is	set	to	12500.	

References:	

1. https://kubernetes.io/docs/admin/kube-controller-manager/	
2. https://github.com/kubernetes/kubernetes/issues/28484	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

123	|	P a g e 	
	

1.3.2 Ensure that the --profiling argument is set to false (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Disable	profiling,	if	not	needed.	

Rationale:	

Profiling	allows	for	the	identification	of	specific	performance	bottlenecks.	It	generates	a	
significant	amount	of	program	data	that	could	potentially	be	exploited	to	uncover	system	
and	program	details.	If	you	are	not	experiencing	any	bottlenecks	and	do	not	need	the	
profiler	for	troubleshooting	purposes,	it	is	recommended	to	turn	it	off	to	reduce	the	
potential	attack	surface.	

Impact:	

Profiling	information	would	not	be	available.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-controller-manager

Verify	that	the	--profiling	argument	is	set	to	false.

Remediation:	

Edit	the	Controller	Manager	pod	specification	file	/etc/kubernetes/manifests/kube-
controller-manager.yaml	on	the	master	node	and	set	the	below	parameter.	

--profiling=false

Default	Value:

By	default,	profiling	is	enabled.	

References:	

1. https://kubernetes.io/docs/admin/kube-controller-manager/	
2. https://github.com/kubernetes/community/blob/master/contributors/devel/profi

ling.md	

124	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

125	|	P a g e 	
	

1.3.3 Ensure that the --use-service-account-credentials argument is set
to true (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Use	individual	service	account	credentials	for	each	controller.	

Rationale:	

The	controller	manager	creates	a	service	account	per	controller	in	the	kube-system	
namespace,	generates	a	credential	for	it,	and	builds	a	dedicated	API	client	with	that	service	
account	credential	for	each	controller	loop	to	use.	Setting	the	--use-service-account-
credentials	to	true	runs	each	control	loop	within	the	controller	manager	using	a	separate	
service	account	credential.	When	used	in	combination	with	RBAC,	this	ensures	that	the	
control	loops	run	with	the	minimum	permissions	required	to	perform	their	intended	tasks.	

Impact:	

Whatever	authorizer	is	configured	for	the	cluster,	it	must	grant	sufficient	permissions	to	
the	service	accounts	to	perform	their	intended	tasks.	When	using	the	RBAC	authorizer,	
those	roles	are	created	and	bound	to	the	appropriate	service	accounts	in	the	kube-system	
namespace	automatically	with	default	roles	and	rolebindings	that	are	auto-reconciled	on	
startup.	

If	using	other	authorization	methods	(ABAC,	Webhook,	etc),	the	cluster	deployer	is	
responsible	for	granting	appropriate	permissions	to	the	service	accounts	(the	required	
permissions	can	be	seen	by	inspecting	the	controller-roles.yaml	and	controller-role-
bindings.yaml	files	for	the	RBAC	roles.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-controller-manager

Verify	that	the	--use-service-account-credentials	argument	is	set	to	true.

Remediation:	

126	|	P a g e 	
	

Edit	the	Controller	Manager	pod	specification	file	/etc/kubernetes/manifests/kube-
controller-manager.yaml	on	the	master	node	to	set	the	below	parameter.	

--use-service-account-credentials=true

Default	Value:

By	default,	--use-service-account-credentials	is	set	to	false.	

References:	

1. https://kubernetes.io/docs/admin/kube-controller-manager/	
2. https://kubernetes.io/docs/admin/service-accounts-admin/	
3. https://github.com/kubernetes/kubernetes/blob/release-

1.6/plugin/pkg/auth/authorizer/rbac/bootstrappolicy/testdata/controller-
roles.yaml	

4. https://github.com/kubernetes/kubernetes/blob/release-
1.6/plugin/pkg/auth/authorizer/rbac/bootstrappolicy/testdata/controller-role-
bindings.yaml	

5. https://kubernetes.io/docs/admin/authorization/rbac/#controller-roles	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

127	|	P a g e 	
	

1.3.4 Ensure that the --service-account-private-key-file argument is set
as appropriate (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Explicitly	set	a	service	account	private	key	file	for	service	accounts	on	the	controller	
manager.	

Rationale:	

To	ensure	that	keys	for	service	account	tokens	can	be	rotated	as	needed,	a	separate	
public/private	key	pair	should	be	used	for	signing	service	account	tokens.	The	private	key	
should	be	specified	to	the	controller	manager	with	--service-account-private-key-file	
as	appropriate.	

Impact:	

You	would	need	to	securely	maintain	the	key	file	and	rotate	the	keys	based	on	your	
organization's	key	rotation	policy.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-controller-manager

Verify	that	the	--service-account-private-key-file	argument	is	set	as	appropriate.

Remediation:	

Edit	the	Controller	Manager	pod	specification	file	/etc/kubernetes/manifests/kube-
controller-manager.yaml	on	the	master	node	and	set	the	--service-account-private-
key-file	parameter	to	the	private	key	file	for	service	accounts.	

--service-account-private-key-file=<filename>

Default	Value:

By	default,	--service-account-private-key-file	it	not	set.	

References:	

128	|	P a g e 	
	

1. https://kubernetes.io/docs/admin/kube-controller-manager/	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

129	|	P a g e 	
	

1.3.5 Ensure that the --root-ca-file argument is set as appropriate
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Allow	pods	to	verify	the	API	server's	serving	certificate	before	establishing	connections.	

Rationale:	

Processes	running	within	pods	that	need	to	contact	the	API	server	must	verify	the	API	
server's	serving	certificate.	Failing	to	do	so	could	be	a	subject	to	man-in-the-middle	attacks.	

Providing	the	root	certificate	for	the	API	server's	serving	certificate	to	the	controller	
manager	with	the	--root-ca-file	argument	allows	the	controller	manager	to	inject	the	
trusted	bundle	into	pods	so	that	they	can	verify	TLS	connections	to	the	API	server.	

Impact:	

You	need	to	setup	and	maintain	root	certificate	authority	file.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-controller-manager

Verify	that	the	--root-ca-file	argument	exists	and	is	set	to	a	certificate	bundle	file	
containing	the	root	certificate	for	the	API	server's	serving	certificate.

Remediation:	

Edit	the	Controller	Manager	pod	specification	file	/etc/kubernetes/manifests/kube-
controller-manager.yaml	on	the	master	node	and	set	the	--root-ca-file	parameter	to	
the	certificate	bundle	file`.	

--root-ca-file=<path/to/file>

Default	Value:

By	default,	--root-ca-file	is	not	set.	

130	|	P a g e 	
	

References:	

1. https://kubernetes.io/docs/admin/kube-controller-manager/	
2. https://github.com/kubernetes/kubernetes/issues/11000	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

131	|	P a g e 	
	

1.3.6 Ensure that the RotateKubeletServerCertificate argument is set to
true (Automated)

Profile	Applicability:	

•		Level	2	-	Master	Node	

Description:	

Enable	kubelet	server	certificate	rotation	on	controller-manager.	

Rationale:	

RotateKubeletServerCertificate	causes	the	kubelet	to	both	request	a	serving	certificate	
after	bootstrapping	its	client	credentials	and	rotate	the	certificate	as	its	existing	credentials	
expire.	This	automated	periodic	rotation	ensures	that	the	there	are	no	downtimes	due	to	
expired	certificates	and	thus	addressing	availability	in	the	CIA	security	triad.	

Note:	This	recommendation	only	applies	if	you	let	kubelets	get	their	certificates	from	the	
API	server.	In	case	your	kubelet	certificates	come	from	an	outside	authority/tool	(e.g.	
Vault)	then	you	need	to	take	care	of	rotation	yourself.	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-controller-manager

Verify	that	RotateKubeletServerCertificate	argument	exists	and	is	set	to	true.

Remediation:	

Edit	the	Controller	Manager	pod	specification	file	/etc/kubernetes/manifests/kube-
controller-manager.yaml	on	the	master	node	and	set	the	--feature-gates	parameter	to	
include	RotateKubeletServerCertificate=true.	

--feature-gates=RotateKubeletServerCertificate=true

Default	Value:

132	|	P a g e 	
	

By	default,	RotateKubeletServerCertificate	is	set	to	"true"	this	recommendation	verifies	
that	it	has	not	been	disabled.	

References:	

1. https://kubernetes.io/docs/admin/kubelet-tls-bootstrapping/#approval-controller	
2. https://github.com/kubernetes/features/issues/267	
3. https://github.com/kubernetes/kubernetes/pull/45059	
4. https://kubernetes.io/docs/admin/kube-controller-manager/	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

133	|	P a g e 	
	

1.3.7 Ensure that the --bind-address argument is set to 127.0.0.1
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	bind	the	Controller	Manager	service	to	non-loopback	insecure	addresses.	

Rationale:	

The	Controller	Manager	API	service	which	runs	on	port	10252/TCP	by	default	is	used	for	
health	and	metrics	information	and	is	available	without	authentication	or	encryption.	As	
such	it	should	only	be	bound	to	a	localhost	interface,	to	minimize	the	cluster's	attack	
surface	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-controller-manager

Verify	that	the	--bind-address	argument	is	set	to	127.0.0.1

Remediation:	

Edit	the	Controller	Manager	pod	specification	file	/etc/kubernetes/manifests/kube-
controller-manager.yaml	on	the	master	node	and	ensure	the	correct	value	for	the	--
bind-address	parameter	

Default	Value:	

By	default,	the	--bind-address	parameter	is	set	to	0.0.0.0	

References:	

1. https://kubernetes.io/docs/reference/command-line-tools-reference/kube-
controller-manager/	

134	|	P a g e 	
	

Additional	Information:	

Although	the	current	Kubernetes	documentation	site	says	that	--address	is	deprecated	in	
favour	of	--bind-address	Kubeadm	1.11	still	makes	use	of	--address	

CIS	Controls:	

Version	6	

	 9.1	Limit	Open	Ports,	Protocols,	and	Services	
	 Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

Version	7	

	 9.2	Ensure	Only	Approved	Ports,	Protocols	and	Services	Are	Running	
	 Ensure	that	only	network	ports,	protocols,	and	services	listening	on	a	system	with	
validated	business	needs,	are	running	on	each	system.	

135	|	P a g e 	
	

1.4 Scheduler

This	section	contains	recommendations	relating	to	Scheduler	configuration	flags	

1.4.1 Ensure that the --profiling argument is set to false (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Disable	profiling,	if	not	needed.	

Rationale:	

Profiling	allows	for	the	identification	of	specific	performance	bottlenecks.	It	generates	a	
significant	amount	of	program	data	that	could	potentially	be	exploited	to	uncover	system	
and	program	details.	If	you	are	not	experiencing	any	bottlenecks	and	do	not	need	the	
profiler	for	troubleshooting	purposes,	it	is	recommended	to	turn	it	off	to	reduce	the	
potential	attack	surface.	

Impact:	

Profiling	information	would	not	be	available.	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-scheduler

Verify	that	the	--profiling	argument	is	set	to	false.

Remediation:	

Edit	the	Scheduler	pod	specification	file	/etc/kubernetes/manifests/kube-
scheduler.yaml	file	on	the	master	node	and	set	the	below	parameter.	

--profiling=false

Default	Value:

By	default,	profiling	is	enabled.	

136	|	P a g e 	
	

References:	

1. https://kubernetes.io/docs/admin/kube-scheduler/	
2. https://github.com/kubernetes/community/blob/master/contributors/devel/profi

ling.md	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

137	|	P a g e 	
	

1.4.2 Ensure that the --bind-address argument is set to 127.0.0.1
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	bind	the	scheduler	service	to	non-loopback	insecure	addresses.	

Rationale:	

The	Scheduler	API	service	which	runs	on	port	10251/TCP	by	default	is	used	for	health	and	
metrics	information	and	is	available	without	authentication	or	encryption.	As	such	it	
should	only	be	bound	to	a	localhost	interface,	to	minimize	the	cluster's	attack	surface	

Impact:	

None	

Audit:	

Run	the	following	command	on	the	master	node:	

ps -ef | grep kube-scheduler

Verify	that	the	--bind-address	argument	is	set	to	127.0.0.1

Remediation:	

Edit	the	Scheduler	pod	specification	file	/etc/kubernetes/manifests/kube-
scheduler.yaml	on	the	master	node	and	ensure	the	correct	value	for	the	--bind-address	
parameter	

Default	Value:	

By	default,	the	--bind-address	parameter	is	set	to	0.0.0.0	

References:	

1. https://kubernetes.io/docs/reference/command-line-tools-reference/kube-
scheduler/	

CIS	Controls:	

138	|	P a g e 	
	

Version	6	

	 9.1	Limit	Open	Ports,	Protocols,	and	Services	
	 Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

Version	7	

	 9.2	Ensure	Only	Approved	Ports,	Protocols	and	Services	Are	Running	
	 Ensure	that	only	network	ports,	protocols,	and	services	listening	on	a	system	with	
validated	business	needs,	are	running	on	each	system.	

139	|	P a g e 	
	

2 etcd

This	section	covers	recommendations	for	etcd	configuration.	

140	|	P a g e 	
	

2.1 Ensure that the --cert-file and --key-file arguments are set as
appropriate (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Configure	TLS	encryption	for	the	etcd	service.	

Rationale:	

etcd	is	a	highly-available	key	value	store	used	by	Kubernetes	deployments	for	persistent	
storage	of	all	of	its	REST	API	objects.	These	objects	are	sensitive	in	nature	and	should	be	
encrypted	in	transit.	

Impact:	

Client	connections	only	over	TLS	would	be	served.	

Audit:	

Run	the	following	command	on	the	etcd	server	node	

ps -ef | grep etcd

Verify	that	the	--cert-file	and	the	--key-file	arguments	are	set	as	appropriate.

Remediation:	

Follow	the	etcd	service	documentation	and	configure	TLS	encryption.	
Then,	edit	the	etcd	pod	specification	file	/etc/kubernetes/manifests/etcd.yaml	on	the	
master	node	and	set	the	below	parameters.	

--cert-file=</path/to/ca-file>
--key-file=</path/to/key-file>

Default	Value:

By	default,	TLS	encryption	is	not	set.	

References:	

1. https://coreos.com/etcd/docs/latest/op-guide/security.html	

141	|	P a g e 	
	

2. https://kubernetes.io/docs/admin/etcd/	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

142	|	P a g e 	
	

2.2 Ensure that the --client-cert-auth argument is set to true
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Enable	client	authentication	on	etcd	service.	

Rationale:	

etcd	is	a	highly-available	key	value	store	used	by	Kubernetes	deployments	for	persistent	
storage	of	all	of	its	REST	API	objects.	These	objects	are	sensitive	in	nature	and	should	not	
be	available	to	unauthenticated	clients.	You	should	enable	the	client	authentication	via	
valid	certificates	to	secure	the	access	to	the	etcd	service.	

Impact:	

All	clients	attempting	to	access	the	etcd	server	will	require	a	valid	client	certificate.	

Audit:	

Run	the	following	command	on	the	etcd	server	node:	

ps -ef | grep etcd

Verify	that	the	--client-cert-auth	argument	is	set	to	true.

Remediation:	

Edit	the	etcd	pod	specification	file	/etc/kubernetes/manifests/etcd.yaml	on	the	master	
node	and	set	the	below	parameter.	

--client-cert-auth="true"

Default	Value:

By	default,	the	etcd	service	can	be	queried	by	unauthenticated	clients.	

References:	

1. https://coreos.com/etcd/docs/latest/op-guide/security.html	
2. https://kubernetes.io/docs/admin/etcd/	

143	|	P a g e 	
	

3. https://coreos.com/etcd/docs/latest/op-guide/configuration.html#client-cert-auth	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

144	|	P a g e 	
	

2.3 Ensure that the --auto-tls argument is not set to true (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	use	self-signed	certificates	for	TLS.	

Rationale:	

etcd	is	a	highly-available	key	value	store	used	by	Kubernetes	deployments	for	persistent	
storage	of	all	of	its	REST	API	objects.	These	objects	are	sensitive	in	nature	and	should	not	
be	available	to	unauthenticated	clients.	You	should	enable	the	client	authentication	via	
valid	certificates	to	secure	the	access	to	the	etcd	service.	

Impact:	

Clients	will	not	be	able	to	use	self-signed	certificates	for	TLS.	

Audit:	

Run	the	following	command	on	the	etcd	server	node:	

ps -ef | grep etcd

Verify	that	if	the	--auto-tls	argument	exists,	it	is	not	set	to	true.

Remediation:	

Edit	the	etcd	pod	specification	file	/etc/kubernetes/manifests/etcd.yaml	on	the	master	
node	and	either	remove	the	--auto-tls	parameter	or	set	it	to	false.	

--auto-tls=false

Default	Value:

By	default,	--auto-tls	is	set	to	false.	

References:	

1. https://coreos.com/etcd/docs/latest/op-guide/security.html	
2. https://kubernetes.io/docs/admin/etcd/	
3. https://coreos.com/etcd/docs/latest/op-guide/configuration.html#auto-tls	

145	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

146	|	P a g e 	
	

2.4 Ensure that the --peer-cert-file and --peer-key-file arguments are set
as appropriate (Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

etcd	should	be	configured	to	make	use	of	TLS	encryption	for	peer	connections.	

Rationale:	

etcd	is	a	highly-available	key	value	store	used	by	Kubernetes	deployments	for	persistent	
storage	of	all	of	its	REST	API	objects.	These	objects	are	sensitive	in	nature	and	should	be	
encrypted	in	transit	and	also	amongst	peers	in	the	etcd	clusters.	

Impact:	

etcd	cluster	peers	would	need	to	set	up	TLS	for	their	communication.	

Audit:	

Run	the	following	command	on	the	etcd	server	node:	

ps -ef | grep etcd

Verify	that	the	--peer-cert-file	and	--peer-key-file	arguments	are	set	as	appropriate.	
Note:	This	recommendation	is	applicable	only	for	etcd	clusters.	If	you	are	using	only	one	
etcd	server	in	your	environment	then	this	recommendation	is	not	applicable.

Remediation:	

Follow	the	etcd	service	documentation	and	configure	peer	TLS	encryption	as	appropriate	
for	your	etcd	cluster.	
Then,	edit	the	etcd	pod	specification	file	/etc/kubernetes/manifests/etcd.yaml	on	the	
master	node	and	set	the	below	parameters.	

--peer-client-file=</path/to/peer-cert-file>
--peer-key-file=</path/to/peer-key-file>

Default	Value:

Note:	This	recommendation	is	applicable	only	for	etcd	clusters.	If	you	are	using	only	one	
etcd	server	in	your	environment	then	this	recommendation	is	not	applicable.	

147	|	P a g e 	
	

By	default,	peer	communication	over	TLS	is	not	configured.	

References:	

1. https://coreos.com/etcd/docs/latest/op-guide/security.html	
2. https://kubernetes.io/docs/admin/etcd/	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

148	|	P a g e 	
	

2.5 Ensure that the --peer-client-cert-auth argument is set to true
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

etcd	should	be	configured	for	peer	authentication.	

Rationale:	

etcd	is	a	highly-available	key	value	store	used	by	Kubernetes	deployments	for	persistent	
storage	of	all	of	its	REST	API	objects.	These	objects	are	sensitive	in	nature	and	should	be	
accessible	only	by	authenticated	etcd	peers	in	the	etcd	cluster.	

Impact:	

All	peers	attempting	to	communicate	with	the	etcd	server	will	require	a	valid	client	
certificate	for	authentication.	

Audit:	

Run	the	following	command	on	the	etcd	server	node:	

ps -ef | grep etcd

Verify	that	the	--peer-client-cert-auth	argument	is	set	to	true.	
Note:	This	recommendation	is	applicable	only	for	etcd	clusters.	If	you	are	using	only	one	
etcd	server	in	your	environment	then	this	recommendation	is	not	applicable.

Remediation:	

Edit	the	etcd	pod	specification	file	/etc/kubernetes/manifests/etcd.yaml	on	the	master	
node	and	set	the	below	parameter.	

--peer-client-cert-auth=true

Default	Value:

Note:	This	recommendation	is	applicable	only	for	etcd	clusters.	If	you	are	using	only	one	
etcd	server	in	your	environment	then	this	recommendation	is	not	applicable.	

By	default,	--peer-client-cert-auth	argument	is	set	to	false.	

149	|	P a g e 	
	

References:	

1. https://coreos.com/etcd/docs/latest/op-guide/security.html	
2. https://kubernetes.io/docs/admin/etcd/	
3. https://coreos.com/etcd/docs/latest/op-guide/configuration.html#peer-client-

cert-auth	

CIS	Controls:	

Version	6	

	 14.4	Protect	Information	With	Access	Control	Lists	
	 All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

Version	7	

	 14.6	Protect	Information	through	Access	Control	Lists	
	 Protect	all	information	stored	on	systems	with	file	system,	network	share,	claims,	
application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

150	|	P a g e 	
	

2.6 Ensure that the --peer-auto-tls argument is not set to true
(Automated)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	use	automatically	generated	self-signed	certificates	for	TLS	connections	between	
peers.	

Rationale:	

etcd	is	a	highly-available	key	value	store	used	by	Kubernetes	deployments	for	persistent	
storage	of	all	of	its	REST	API	objects.	These	objects	are	sensitive	in	nature	and	should	be	
accessible	only	by	authenticated	etcd	peers	in	the	etcd	cluster.	Hence,	do	not	use	self-
signed	certificates	for	authentication.	

Impact:	

All	peers	attempting	to	communicate	with	the	etcd	server	will	require	a	valid	client	
certificate	for	authentication.	

Audit:	

Run	the	following	command	on	the	etcd	server	node:	

ps -ef | grep etcd

Verify	that	if	the	--peer-auto-tls	argument	exists,	it	is	not	set	to	true.	
Note:	This	recommendation	is	applicable	only	for	etcd	clusters.	If	you	are	using	only	one	
etcd	server	in	your	environment	then	this	recommendation	is	not	applicable.

Remediation:	

Edit	the	etcd	pod	specification	file	/etc/kubernetes/manifests/etcd.yaml	on	the	master	
node	and	either	remove	the	--peer-auto-tls	parameter	or	set	it	to	false.	

--peer-auto-tls=false

Default	Value:

151	|	P a g e 	
	

Note:	This	recommendation	is	applicable	only	for	etcd	clusters.	If	you	are	using	only	one	
etcd	server	in	your	environment	then	this	recommendation	is	not	applicable.	

By	default,	--peer-auto-tls	argument	is	set	to	false.	

References:	

1. https://coreos.com/etcd/docs/latest/op-guide/security.html	
2. https://kubernetes.io/docs/admin/etcd/	
3. https://coreos.com/etcd/docs/latest/op-guide/configuration.html#peer-auto-tls	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

152	|	P a g e 	
	

2.7 Ensure that a unique Certificate Authority is used for etcd (Manual)

Profile	Applicability:	

•		Level	2	-	Master	Node	

Description:	

Use	a	different	certificate	authority	for	etcd	from	the	one	used	for	Kubernetes.	

Rationale:	

etcd	is	a	highly	available	key-value	store	used	by	Kubernetes	deployments	for	persistent	
storage	of	all	of	its	REST	API	objects.	Its	access	should	be	restricted	to	specifically	
designated	clients	and	peers	only.	

Authentication	to	etcd	is	based	on	whether	the	certificate	presented	was	issued	by	a	
trusted	certificate	authority.	There	is	no	checking	of	certificate	attributes	such	as	common	
name	or	subject	alternative	name.	As	such,	if	any	attackers	were	able	to	gain	access	to	any	
certificate	issued	by	the	trusted	certificate	authority,	they	would	be	able	to	gain	full	access	
to	the	etcd	database.	

Impact:	

Additional	management	of	the	certificates	and	keys	for	the	dedicated	certificate	authority	
will	be	required.	

Audit:	

Review	the	CA	used	by	the	etcd	environment	and	ensure	that	it	does	not	match	the	CA	
certificate	file	used	for	the	management	of	the	overall	Kubernetes	cluster.	
Run	the	following	command	on	the	master	node:	

ps -ef | grep etcd

Note	the	file	referenced	by	the	--trusted-ca-file	argument.	
Run	the	following	command	on	the	master	node:

ps -ef | grep apiserver

Verify	that	the	file	referenced	by	the	--client-ca-file	for	apiserver	is	different	from	the	-
-trusted-ca-file	used	by	etcd.

Remediation:	

153	|	P a g e 	
	

Follow	the	etcd	documentation	and	create	a	dedicated	certificate	authority	setup	for	the	
etcd	service.	
Then,	edit	the	etcd	pod	specification	file	/etc/kubernetes/manifests/etcd.yaml	on	the	
master	node	and	set	the	below	parameter.	

--trusted-ca-file=</path/to/ca-file>

Default	Value:

By	default,	no	etcd	certificate	is	created	and	used.	

References:	

1. https://coreos.com/etcd/docs/latest/op-guide/security.html	

CIS	Controls:	

Version	6	

	 9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	
	 Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

154	|	P a g e 	
	

3 Control Plane Configuration

This	section	contains	recommendations	for	cluster-wide	areas,	such	as	authentication	and	
logging.	Unlike	section	1	these	recommendations	should	apply	to	all	deployments.	

155	|	P a g e 	
	

3.1 Authentication and Authorization

3.1.1 Client certificate authentication should not be used for users
(Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Kubernetes	provides	the	option	to	use	client	certificates	for	user	authentication.	However	
as	there	is	no	way	to	revoke	these	certificates	when	a	user	leaves	an	organization	or	loses	
their	credential,	they	are	not	suitable	for	this	purpose.	

It	is	not	possible	to	fully	disable	client	certificate	use	within	a	cluster	as	it	is	used	for	
component	to	component	authentication.	

Rationale:	

With	any	authentication	mechanism	the	ability	to	revoke	credentials	if	they	are	
compromised	or	no	longer	required,	is	a	key	control.	Kubernetes	client	certificate	
authentication	does	not	allow	for	this	due	to	a	lack	of	support	for	certificate	revocation.	

Impact:	

External	mechanisms	for	authentication	generally	require	additional	software	to	be	
deployed.	

Audit:	

Review	user	access	to	the	cluster	and	ensure	that	users	are	not	making	use	of	Kubernetes	
client	certificate	authentication.	

Remediation:	

Alternative	mechanisms	provided	by	Kubernetes	such	as	the	use	of	OIDC	should	be	
implemented	in	place	of	client	certificates.	

Default	Value:	

Client	certificate	authentication	is	enabled	by	default.	

Additional	Information:	

156	|	P a g e 	
	

The	lack	of	certificate	revocation	was	flagged	up	as	a	high	risk	issue	in	the	recent	
Kubernetes	security	audit.	Without	this	feature,	client	certificate	authentication	is	not	
suitable	for	end	users.	

157	|	P a g e 	
	

3.2 Logging

3.2.1 Ensure that a minimal audit policy is created (Manual)

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Kubernetes	can	audit	the	details	of	requests	made	to	the	API	server.	The	--audit-policy-
file	flag	must	be	set	for	this	logging	to	be	enabled.	

Rationale:	

Logging	is	an	important	detective	control	for	all	systems,	to	detect	potential	unauthorised	
access.	

Impact:	

Audit	logs	will	be	created	on	the	master	nodes,	which	will	consume	disk	space.	Care	should	
be	taken	to	avoid	generating	too	large	volumes	of	log	information	as	this	could	impact	the	
available	of	the	cluster	nodes.	

Audit:	

Run	the	following	command	on	one	of	the	cluster	master	nodes:	

ps -ef | grep kube-apiserver

Verify	that	the	--audit-policy-file	is	set.	Review	the	contents	of	the	file	specified	and	
ensure	that	it	contains	a	valid	audit	policy.

Remediation:	

Create	an	audit	policy	file	for	your	cluster.	

Default	Value:	

Unless	the	--audit-policy-file	flag	is	specified,	no	auditing	will	be	carried	out.	

References:	

1. https://kubernetes.io/docs/tasks/debug-application-cluster/audit/	

158	|	P a g e 	
	

CIS	Controls:	

Version	7	

	 6.2	Activate	audit	logging	
	 Ensure	that	local	logging	has	been	enabled	on	all	systems	and	networking	devices.	

159	|	P a g e 	
	

3.2.2 Ensure that the audit policy covers key security concerns (Manual)

Profile	Applicability:	

•		Level	2	-	Master	Node	

Description:	

Ensure	that	the	audit	policy	created	for	the	cluster	covers	key	security	concerns.	

Rationale:	

Security	audit	logs	should	cover	access	and	modification	of	key	resources	in	the	cluster,	to	
enable	them	to	form	an	effective	part	of	a	security	environment.	

Impact:	

Increasing	audit	logging	will	consume	resources	on	the	nodes	or	other	log	destination.	

Audit:	

Review	the	audit	policy	provided	for	the	cluster	and	ensure	that	it	covers	at	least	the	
following	areas	:-	

• Access	to	Secrets	managed	by	the	cluster.	Care	should	be	taken	to	only	log	Metadata	
for	requests	to	Secrets,	ConfigMaps,	and	TokenReviews,	in	order	to	avoid	the	risk	of	
logging	sensitive	data.	

• Modification	of	pod	and	deployment	objects.	
• Use	of	pods/exec,	pods/portforward,	pods/proxy	and	services/proxy.	

For	most	requests,	minimally	logging	at	the	Metadata	level	is	recommended	(the	most	basic	
level	of	logging).	

Remediation:	

Consider	modification	of	the	audit	policy	in	use	on	the	cluster	to	include	these	items,	at	a	
minimum.	

Default	Value:	

By	default	Kubernetes	clusters	do	not	log	audit	information.	

References:	

160	|	P a g e 	
	

1. https://github.com/k8scop/k8s-security-
dashboard/blob/master/configs/kubernetes/adv-audit.yaml	

2. https://kubernetes.io/docs/tasks/debug-application-cluster/audit/#audit-policy	
3. https://github.com/falcosecurity/falco/blob/master/examples/k8s_audit_config/a

udit-policy.yaml	
4. https://github.com/kubernetes/kubernetes/blob/master/cluster/gce/gci/configur

e-helper.sh#L735	

CIS	Controls:	

Version	6	

	 14.6	Enforce	Detailed	Audit	Logging	For	Sensitive	Information	
	 Enforce	detailed	audit	logging	for	access	to	nonpublic	data	and	special	authentication	for	
sensitive	data.	

Version	7	

	 14.9	Enforce	Detail	Logging	for	Access	or	Changes	to	Sensitive	Data	
	 Enforce	detailed	audit	logging	for	access	to	sensitive	data	or	changes	to	sensitive	data	
(utilizing	tools	such	as	File	Integrity	Monitoring	or	Security	Information	and	Event	
Monitoring).	

161	|	P a g e 	
	

4 Worker Nodes

This	section	consists	of	security	recommendations	for	the	components	that	run	on	
Kubernetes	worker	nodes.	

Note	that	these	components	may	also	run	on	Kubernetes	master	nodes,	so	the	
recommendations	in	this	section	should	be	applied	to	master	nodes	as	well	as	worker	
nodes	where	the	master	nodes	make	use	of	these	components.	

162	|	P a g e 	
	

4.1 Worker Node Configuration Files

This	section	covers	recommendations	for	configuration	files	on	the	worker	nodes.	

To	Perform	an	Automated	Audit	utilizing	CIS-CAT	the	following	parameters	must	be	set	on	
each	node	being	evaluated.	

$kubelet_service_config	

$kubelet_config	

$kubelet_config_yaml	

If	you	are	auditing	a	kubeadm	environment	the	default	settings	for	these	values	are	below:	

export kubelet_service_config=/etc/systemd/system/kubelet.service.d/10-
kubeadm.conf

export kubelet_config=/etc/kubernetes/kubelet.conf

export kubelet_config_yaml=/var/lib/kubelet/config.yaml

4.1.1 Ensure that the kubelet service file permissions are set to 644 or
more restrictive (Automated)

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Ensure	that	the	kubelet	service	file	has	permissions	of	644	or	more	restrictive.	

Rationale:	

The	kubelet	service	file	controls	various	parameters	that	set	the	behavior	of	the	kubelet	
service	in	the	worker	node.	You	should	restrict	its	file	permissions	to	maintain	the	integrity	
of	the	file.	The	file	should	be	writable	by	only	the	administrators	on	the	system.	

Impact:	

None	

Audit:	

163	|	P a g e 	
	

Automated	AAC	auditing	has	been	modified	to	allow	CIS-CAT	to	input	a	variable	for	the	/	of	
the	kubelet	service	config	file.	
Please	set	$kubelet_service_config=	based	on	the	file	location	on	your	system	
for	example:	

export kubelet_service_config=/etc/systemd/system/kubelet.service.d/10-
kubeadm.conf

To	perform	the	audit	manually:	
Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,

stat -c %a /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

Verify	that	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,	

chmod 755 /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

Default	Value:

By	default,	the	kubelet	service	file	has	permissions	of	640.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#44-

joining-your-nodes	
3. https://kubernetes.io/docs/admin/kubeadm/#kubelet-drop-in	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

164	|	P a g e 	
	

4.1.2 Ensure that the kubelet service file ownership is set to root:root
(Automated)

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Ensure	that	the	kubelet	service	file	ownership	is	set	to	root:root.	

Rationale:	

The	kubelet	service	file	controls	various	parameters	that	set	the	behavior	of	the	kubelet	
service	in	the	worker	node.	You	should	set	its	file	ownership	to	maintain	the	integrity	of	the	
file.	The	file	should	be	owned	by	root:root.	

Impact:	

None	

Audit:	

Automated	AAC	auditing	has	been	modified	to	allow	CIS-CAT	to	input	a	variable	for	the	/	of	
the	kubelet	service	config	file.	
Please	set	$kubelet_service_config=	based	on	the	file	location	on	your	system	
for	example:	

export kubelet_service_config=/etc/systemd/system/kubelet.service.d/10-
kubeadm.conf

To	perform	the	audit	manually:	
Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,

stat -c %a /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

Verify	that	the	ownership	is	set	to	root:root.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,	

165	|	P a g e 	
	

chown root:root /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

Default	Value:

By	default,	kubelet	service	file	ownership	is	set	to	root:root.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#44-

joining-your-nodes	
3. https://kubernetes.io/docs/admin/kubeadm/#kubelet-drop-in	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

166	|	P a g e 	
	

4.1.3 If proxy kubeconfig file exists ensure permissions are set to 644 or
more restrictive (Manual)

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

If	kube-proxy	is	running,	and	if	it	is	using	a	file-based	kubeconfig	file,	ensure	that	the	proxy	
kubeconfig	file	has	permissions	of	644	or	more	restrictive.	

Rationale:	

The	kube-proxy	kubeconfig	file	controls	various	parameters	of	the	kube-proxy	service	in	
the	worker	node.	You	should	restrict	its	file	permissions	to	maintain	the	integrity	of	the	file.	
The	file	should	be	writable	by	only	the	administrators	on	the	system.	

It	is	possible	to	run	kube-proxy	with	the	kubeconfig	parameters	configured	as	a	
Kubernetes	ConfigMap	instead	of	a	file.	In	this	case,	there	is	no	proxy	kubeconfig	file.	

Impact:	

None	

Audit:	

Find	the	kubeconfig	file	being	used	by	kube-proxy	by	running	the	following	command:	

ps -ef | grep kube-proxy

If	kube-proxy	is	running,	get	the	kubeconfig	file	location	from	the	--kubeconfig	parameter.

To perform the audit:

Run the below command (based on the file location on your system) on the each
worker node. For example,

stat	-c	%a	

Verify that a file is specified and it exists with permissions are `644` or
more restrictive.

Remediation:

167	|	P a g e 	
	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,	

chmod 644 <proxy kubeconfig file>

Default	Value:

By	default,	proxy	file	has	permissions	of	640.	

References:	

1. https://kubernetes.io/docs/admin/kube-proxy/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

168	|	P a g e 	
	

4.1.4 If proxy kubeconfig file exists ensure ownership is set to root:root
(Manual)

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

If	kube-proxy	is	running,	ensure	that	the	file	ownership	of	its	kubeconfig	file	is	set	to	
root:root.	

Rationale:	

The	kubeconfig	file	for	kube-proxy	controls	various	parameters	for	the	kube-proxy	service	
in	the	worker	node.	You	should	set	its	file	ownership	to	maintain	the	integrity	of	the	file.	
The	file	should	be	owned	by	root:root.	

Impact:	

None	

Audit:	

Find	the	kubeconfig	file	being	used	by	kube-proxy	by	running	the	following	command:	

ps -ef | grep kube-proxy

If	kube-proxy	is	running,	get	the	kubeconfig	file	location	from	the	--kubeconfig	parameter.

To perform the audit:

Run the below command (based on the file location on your system) on the each
worker node. For example,

stat	-c	%a		
Verify	that	the	ownership	is	set	to	root:root.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,	

chown root:root <proxy kubeconfig file>

169	|	P a g e 	
	

Default	Value:

By	default,	proxy	file	ownership	is	set	to	root:root.	

References:	

1. https://kubernetes.io/docs/admin/kube-proxy/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

170	|	P a g e 	
	

4.1.5 Ensure that the --kubeconfig kubelet.conf file permissions are set
to 644 or more restrictive (Automated)

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Ensure	that	the	kubelet.conf	file	has	permissions	of	644	or	more	restrictive.	

Rationale:	

The	kubelet.conf	file	is	the	kubeconfig	file	for	the	node,	and	controls	various	parameters	
that	set	the	behavior	and	identity	of	the	worker	node.	You	should	restrict	its	file	
permissions	to	maintain	the	integrity	of	the	file.	The	file	should	be	writable	by	only	the	
administrators	on	the	system.	

Impact:	

None	

Audit:	

Automated	AAC	auditing	has	been	modified	to	allow	CIS-CAT	to	input	a	variable	for	the	/	of	
the	kubelet	config	file.	
Please	set	$kubelet_config=	based	on	the	file	location	on	your	system	
for	example:	

export kubelet_config=/etc/kubernetes/kubelet.conf

To	perform	the	audit	manually:	
Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,

stat -c %a /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

Verify	that	the	ownership	is	set	to	root:root.Verify	that	the	permissions	are	644	or	more	
restrictive.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,	

171	|	P a g e 	
	

chmod 644 /etc/kubernetes/kubelet.conf

Default	Value:

By	default,	kubelet.conf	file	has	permissions	of	640.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

172	|	P a g e 	
	

4.1.6 Ensure that the --kubeconfig kubelet.conf file ownership is set to
root:root (Manual)

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Ensure	that	the	kubelet.conf	file	ownership	is	set	to	root:root.	

Rationale:	

The	kubelet.conf	file	is	the	kubeconfig	file	for	the	node,	and	controls	various	parameters	
that	set	the	behavior	and	identity	of	the	worker	node.	You	should	set	its	file	ownership	to	
maintain	the	integrity	of	the	file.	The	file	should	be	owned	by	root:root.	

Impact:	

None	

Audit:	

Automated	AAC	auditing	has	been	modified	to	allow	CIS-CAT	to	input	a	variable	for	the	/	of	
the	kubelet	config	file.	
Please	set	$kubelet_config=	based	on	the	file	location	on	your	system	
for	example:	

export kubelet_config=/etc/kubernetes/kubelet.conf

To	perform	the	audit	manually:	
Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,

stat -c %a /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

Verify	that	the	ownership	is	set	to	root:root.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,	

chown root:root /etc/kubernetes/kubelet.conf

173	|	P a g e 	
	

Default	Value:

By	default,	kubelet.conf	file	ownership	is	set	to	root:root.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

174	|	P a g e 	
	

4.1.7 Ensure that the certificate authorities file permissions are set to
644 or more restrictive (Manual)

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Ensure	that	the	certificate	authorities	file	has	permissions	of	644	or	more	restrictive.	

Rationale:	

The	certificate	authorities	file	controls	the	authorities	used	to	validate	API	requests.	You	
should	restrict	its	file	permissions	to	maintain	the	integrity	of	the	file.	The	file	should	be	
writable	by	only	the	administrators	on	the	system.	

Impact:	

None	

Audit:	

Run	the	following	command:	

ps -ef | grep kubelet

Find	the	file	specified	by	the	--client-ca-file	argument.	
Run	the	following	command:

stat -c %a <filename>

Verify	that	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	following	command	to	modify	the	file	permissions	of	the	--client-ca-file	

chmod 644 <filename>

Default	Value:

By	default	no	--client-ca-file	is	specified.	

References:	

175	|	P a g e 	
	

1. https://kubernetes.io/docs/admin/authentication/#x509-client-certs	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

	 14.4	Protect	Information	With	Access	Control	Lists	
	 All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

Version	7	

	 14.6	Protect	Information	through	Access	Control	Lists	
	 Protect	all	information	stored	on	systems	with	file	system,	network	share,	claims,	
application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

176	|	P a g e 	
	

4.1.8 Ensure that the client certificate authorities file ownership is set to
root:root (Manual)

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Ensure	that	the	certificate	authorities	file	ownership	is	set	to	root:root.	

Rationale:	

The	certificate	authorities	file	controls	the	authorities	used	to	validate	API	requests.	You	
should	set	its	file	ownership	to	maintain	the	integrity	of	the	file.	The	file	should	be	owned	
by	root:root.	

Impact:	

None	

Audit:	

Run	the	following	command:	

ps -ef | grep kubelet

Find	the	file	specified	by	the	--client-ca-file	argument.	
Run	the	following	command:

stat -c %U:%G <filename>

Verify	that	the	ownership	is	set	to	root:root.

Remediation:	

Run	the	following	command	to	modify	the	ownership	of	the	--client-ca-file.	

chown root:root <filename>

Default	Value:

By	default	no	--client-ca-file	is	specified.	

References:	

177	|	P a g e 	
	

1. https://kubernetes.io/docs/admin/authentication/#x509-client-certs	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

178	|	P a g e 	
	

4.1.9 Ensure that the kubelet --config configuration file has permissions
set to 644 or more restrictive (Automated)

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Ensure	that	if	the	kubelet	refers	to	a	configuration	file	with	the	--config	argument,	that	file	
has	permissions	of	644	or	more	restrictive.	

Rationale:	

The	kubelet	reads	various	parameters,	including	security	settings,	from	a	config	file	
specified	by	the	--config	argument.	If	this	file	is	specified	you	should	restrict	its	file	
permissions	to	maintain	the	integrity	of	the	file.	The	file	should	be	writable	by	only	the	
administrators	on	the	system.	

Impact:	

None	

Audit:	

Automated	AAC	auditing	has	been	modified	to	allow	CIS-CAT	to	input	a	variable	for	the	/	of	
the	kubelet	config	yaml	file.	
Please	set	$kubelet_config_yaml=	based	on	the	file	location	on	your	system	
for	example:	

export kubelet_config_yaml=/var/lib/kubelet/config.yaml

To	perform	the	audit	manually:	
Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,

stat -c %a /var/lib/kubelet/config.yaml

Verify	that	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	following	command	(using	the	config	file	location	identied	in	the	Audit	step)	

179	|	P a g e 	
	

chmod 644 /var/lib/kubelet/config.yaml

Default	Value:

By	default,	the	/var/lib/kubelet/config.yaml	file	as	set	up	by	kubeadm	has	permissions	of	
644.	

References:	

1. https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

180	|	P a g e 	
	

4.1.10 Ensure that the kubelet --config configuration file ownership is
set to root:root (Automated)

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Ensure	that	if	the	kubelet	refers	to	a	configuration	file	with	the	--config	argument,	that	file	
is	owned	by	root:root.	

Rationale:	

The	kubelet	reads	various	parameters,	including	security	settings,	from	a	config	file	
specified	by	the	--config	argument.	If	this	file	is	specified	you	should	restrict	its	file	
permissions	to	maintain	the	integrity	of	the	file.	The	file	should	be	owned	by	root:root.	

Impact:	

None	

Audit:	

Automated	AAC	auditing	has	been	modified	to	allow	CIS-CAT	to	input	a	variable	for	the	/	of	
the	kubelet	config	yaml	file.	
Please	set	$kubelet_config_yaml=	based	on	the	file	location	on	your	system	
for	example:	

export kubelet_config_yaml=/var/lib/kubelet/config.yaml

To	perform	the	audit	manually:	
Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,

stat -c %a /var/lib/kubelet/config.yaml
```Verify that the ownership is set to `root:root`. 

Remediation: 

Run	the	following	command	(using	the	config	file	location	identied	in	the	Audit	step)	

chown root:root /etc/kubernetes/kubelet.conf 

Default	Value: 



181	|	P a g e 	
	

By	default,	/var/lib/kubelet/config.yaml	file	as	set	up	by	kubeadm	is	owned	by	
root:root.	

References:	

1. https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	



182	|	P a g e 	
	

4.2 Kubelet 

This	section	contains	recommendations	for	kubelet	configuration.	

Kubelet	settings	may	be	configured	using	arguments	on	the	running	kubelet	executable,	or	
they	may	be	taken	from	a	Kubelet	config	file.	If	both	are	specified,	the	executable	argument	
takes	precedence.	

To	find	the	Kubelet	config	file,	run	the	following	command:	

ps -ef | grep kubelet | grep config 

If	the	--config	argument	is	present,	this	gives	the	location	of	the	Kubelet	config	file.	This	
config	file	could	be	in	JSON	or	YAML	format	depending	on	your	distribution.	

 

 

 

 

 

 

 

 

 

 

 

 



183	|	P a g e 	
	

4.2.1 Ensure that the --anonymous-auth argument is set to false 
(Automated) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Disable	anonymous	requests	to	the	Kubelet	server.	

Rationale:	

When	enabled,	requests	that	are	not	rejected	by	other	configured	authentication	methods	
are	treated	as	anonymous	requests.	These	requests	are	then	served	by	the	Kubelet	server.	
You	should	rely	on	authentication	to	authorize	access	and	disallow	anonymous	requests.	

Impact:	

Anonymous	requests	will	be	rejected.	

Audit:	

If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	authentication: 
anonymous: enabled	set	to	false.	
Run	the	following	command	on	each	node:	

ps -ef | grep kubelet 

Verify	that	the	--anonymous-auth	argument	is	set	to	false.	
This	executable	argument	may	be	omitted,	provided	there	is	a	corresponding	entry	set	to	
false	in	the	Kubelet	config	file. 

Remediation:	

If	using	a	Kubelet	config	file,	edit	the	file	to	set	authentication: anonymous: enabled	to	
false.	
If	using	executable	arguments,	edit	the	kubelet	service	file	
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	on	each	worker	node	and	
set	the	below	parameter	in	KUBELET_SYSTEM_PODS_ARGS	variable.	

--anonymous-auth=false 

Based	on	your	system,	restart	the	kubelet	service.	For	example: 



184	|	P a g e 	
	

systemctl daemon-reload 
systemctl restart kubelet.service 

Default	Value: 

By	default,	anonymous	access	is	enabled.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://kubernetes.io/docs/admin/kubelet-authentication-authorization/#kubelet-

authentication	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	



185	|	P a g e 	
	

4.2.2 Ensure that the --authorization-mode argument is not set to 
AlwaysAllow (Automated) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Do	not	allow	all	requests.	Enable	explicit	authorization.	

Rationale:	

Kubelets,	by	default,	allow	all	authenticated	requests	(even	anonymous	ones)	without	
needing	explicit	authorization	checks	from	the	apiserver.	You	should	restrict	this	behavior	
and	only	allow	explicitly	authorized	requests.	

Impact:	

Unauthorized	requests	will	be	denied.	

Audit:	

Run	the	following	command	on	each	node:	

ps -ef | grep kubelet 

If	the	--authorization-mode	argument	is	present	check	that	it	is	not	set	to	AlwaysAllow.	If	
it	is	not	present	check	that	there	is	a	Kubelet	config	file	specified	by	--config,	and	that	file	
sets	authorization: mode	to	something	other	than	AlwaysAllow.	
It	is	also	possible	to	review	the	running	configuration	of	a	Kubelet	via	the	/configz	
endpoint	on	the	Kubelet	API	port	(typically	10250/TCP).	Accessing	these	with	appropriate	
credentials	will	provide	details	of	the	Kubelet's	configuration. 

Remediation:	

If	using	a	Kubelet	config	file,	edit	the	file	to	set	authorization: mode	to	Webhook.	
If	using	executable	arguments,	edit	the	kubelet	service	file	
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	on	each	worker	node	and	
set	the	below	parameter	in	KUBELET_AUTHZ_ARGS	variable.	

--authorization-mode=Webhook 

Based	on	your	system,	restart	the	kubelet	service.	For	example: 



186	|	P a g e 	
	

systemctl daemon-reload 
systemctl restart kubelet.service 

Default	Value: 

By	default,	--authorization-mode	argument	is	set	to	AlwaysAllow.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://kubernetes.io/docs/admin/kubelet-authentication-authorization/#kubelet-

authentication	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	



187	|	P a g e 	
	

4.2.3 Ensure that the --client-ca-file argument is set as appropriate 
(Automated) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Enable	Kubelet	authentication	using	certificates.	

Rationale:	

The	connections	from	the	apiserver	to	the	kubelet	are	used	for	fetching	logs	for	pods,	
attaching	(through	kubectl)	to	running	pods,	and	using	the	kubelet’s	port-forwarding	
functionality.	These	connections	terminate	at	the	kubelet’s	HTTPS	endpoint.	By	default,	the	
apiserver	does	not	verify	the	kubelet’s	serving	certificate,	which	makes	the	connection	
subject	to	man-in-the-middle	attacks,	and	unsafe	to	run	over	untrusted	and/or	public	
networks.	Enabling	Kubelet	certificate	authentication	ensures	that	the	apiserver	could	
authenticate	the	Kubelet	before	submitting	any	requests.	

Impact:	

You	require	TLS	to	be	configured	on	apiserver	as	well	as	kubelets.	

Audit:	

Run	the	following	command	on	each	node:	

ps -ef | grep kubelet 

Verify	that	the	--client-ca-file	argument	exists	and	is	set	to	the	location	of	the	client	
certificate	authority	file.	
If	the	--client-ca-file	argument	is	not	present,	check	that	there	is	a	Kubelet	config	file	
specified	by	--config,	and	that	the	file	sets	authentication: x509: clientCAFile	to	the	
location	of	the	client	certificate	authority	file. 

Remediation:	

If	using	a	Kubelet	config	file,	edit	the	file	to	set	authentication: x509: clientCAFile	to	
the	location	of	the	client	CA	file.	
If	using	command	line	arguments,	edit	the	kubelet	service	file	



188	|	P a g e 	
	

/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	on	each	worker	node	and	
set	the	below	parameter	in	KUBELET_AUTHZ_ARGS	variable.	

--client-ca-file=<path/to/client-ca-file> 

Based	on	your	system,	restart	the	kubelet	service.	For	example: 

systemctl daemon-reload 
systemctl restart kubelet.service 

Default	Value: 

By	default,	--client-ca-file	argument	is	not	set.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-

authentication-authorization/	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	



189	|	P a g e 	
	

4.2.4 Verify that the --read-only-port argument is set to 0 (Manual) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Disable	the	read-only	port.	

Rationale:	

The	Kubelet	process	provides	a	read-only	API	in	addition	to	the	main	Kubelet	API.	
Unauthenticated	access	is	provided	to	this	read-only	API	which	could	possibly	retrieve	
potentially	sensitive	information	about	the	cluster.	

Impact:	

Removal	of	the	read-only	port	will	require	that	any	service	which	made	use	of	it	will	need	
to	be	re-configured	to	use	the	main	Kubelet	API.	

Audit:	

Run	the	following	command	on	each	node:	

ps -ef | grep kubelet 

Verify	that	the	--read-only-port	argument	exists	and	is	set	to	0.	
If	the	--read-only-port	argument	is	not	present,	check	that	there	is	a	Kubelet	config	file	
specified	by	--config.	Check	that	if	there	is	a	readOnlyPort	entry	in	the	file,	it	is	set	to	0. 

Remediation:	

If	using	a	Kubelet	config	file,	edit	the	file	to	set	readOnlyPort	to	0.	
If	using	command	line	arguments,	edit	the	kubelet	service	file	
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	on	each	worker	node	and	
set	the	below	parameter	in	KUBELET_SYSTEM_PODS_ARGS	variable.	

--read-only-port=0 

Based	on	your	system,	restart	the	kubelet	service.	For	example: 

systemctl daemon-reload 
systemctl restart kubelet.service 



190	|	P a g e 	
	

Default	Value: 

By	default,	--read-only-port	is	set	to	10255/TCP.	However,	if	a	config	file	is	specified	by	--
config	the	default	value	for	readOnlyPort	is	0.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	

CIS	Controls:	

Version	6	

	 9.1	Limit	Open	Ports,	Protocols,	and	Services	
	 Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

Version	7	

	 9.2	Ensure	Only	Approved	Ports,	Protocols	and	Services	Are	Running	
	 Ensure	that	only	network	ports,	protocols,	and	services	listening	on	a	system	with	
validated	business	needs,	are	running	on	each	system.	



191	|	P a g e 	
	

4.2.5 Ensure that the --streaming-connection-idle-timeout argument is 
not set to 0 (Manual) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Do	not	disable	timeouts	on	streaming	connections.	

Rationale:	

Setting	idle	timeouts	ensures	that	you	are	protected	against	Denial-of-Service	attacks,	
inactive	connections	and	running	out	of	ephemeral	ports.	

Note:	By	default,	--streaming-connection-idle-timeout	is	set	to	4	hours	which	might	be	
too	high	for	your	environment.	Setting	this	as	appropriate	would	additionally	ensure	that	
such	streaming	connections	are	timed	out	after	serving	legitimate	use	cases.	

Impact:	

Long-lived	connections	could	be	interrupted.	

Audit:	

Run	the	following	command	on	each	node:	

ps -ef | grep kubelet 

Verify	that	the	--streaming-connection-idle-timeout	argument	is	not	set	to	0.	
If	the	argument	is	not	present,	and	there	is	a	Kubelet	config	file	specified	by	--config,	
check	that	it	does	not	set	streamingConnectionIdleTimeout	to	0. 

Remediation:	

If	using	a	Kubelet	config	file,	edit	the	file	to	set	streamingConnectionIdleTimeout	to	a	
value	other	than	0.	
If	using	command	line	arguments,	edit	the	kubelet	service	file	
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	on	each	worker	node	and	
set	the	below	parameter	in	KUBELET_SYSTEM_PODS_ARGS	variable.	

--streaming-connection-idle-timeout=5m 



192	|	P a g e 	
	

Based	on	your	system,	restart	the	kubelet	service.	For	example: 

systemctl daemon-reload 
systemctl restart kubelet.service 

Default	Value: 

By	default,	--streaming-connection-idle-timeout	is	set	to	4	hours.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://github.com/kubernetes/kubernetes/pull/18552	

CIS	Controls:	

Version	6	

	 9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	
	 Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	



193	|	P a g e 	
	

4.2.6 Ensure that the --protect-kernel-defaults argument is set to true 
(Automated) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Protect	tuned	kernel	parameters	from	overriding	kubelet	default	kernel	parameter	values.	

Rationale:	

Kernel	parameters	are	usually	tuned	and	hardened	by	the	system	administrators	before	
putting	the	systems	into	production.	These	parameters	protect	the	kernel	and	the	system.	
Your	kubelet	kernel	defaults	that	rely	on	such	parameters	should	be	appropriately	set	to	
match	the	desired	secured	system	state.	Ignoring	this	could	potentially	lead	to	running	
pods	with	undesired	kernel	behavior.	

Impact:	

You	would	have	to	re-tune	kernel	parameters	to	match	kubelet	parameters.	

Audit:	

Run	the	following	command	on	each	node:	

ps -ef | grep kubelet 

Verify	that	the	--protect-kernel-defaults	argument	is	set	to	true.	
If	the	--protect-kernel-defaults	argument	is	not	present,	check	that	there	is	a	Kubelet	
config	file	specified	by	--config,	and	that	the	file	sets	protectKernelDefaults	to	true. 

Remediation:	

If	using	a	Kubelet	config	file,	edit	the	file	to	set	protectKernelDefaults: true.	
If	using	command	line	arguments,	edit	the	kubelet	service	file	
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	on	each	worker	node	and	
set	the	below	parameter	in	KUBELET_SYSTEM_PODS_ARGS	variable.	

--protect-kernel-defaults=true 

Based	on	your	system,	restart	the	kubelet	service.	For	example: 



194	|	P a g e 	
	

systemctl daemon-reload 
systemctl restart kubelet.service 

Default	Value: 

By	default,	--protect-kernel-defaults	is	not	set.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	

CIS	Controls:	

Version	6	

	 3	Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	
	 Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	



195	|	P a g e 	
	

4.2.7 Ensure that the --make-iptables-util-chains argument is set to true 
(Automated) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Allow	Kubelet	to	manage	iptables.	

Rationale:	

Kubelets	can	automatically	manage	the	required	changes	to	iptables	based	on	how	you	
choose	your	networking	options	for	the	pods.	It	is	recommended	to	let	kubelets	manage	
the	changes	to	iptables.	This	ensures	that	the	iptables	configuration	remains	in	sync	with	
pods	networking	configuration.	Manually	configuring	iptables	with	dynamic	pod	network	
configuration	changes	might	hamper	the	communication	between	pods/containers	and	to	
the	outside	world.	You	might	have	iptables	rules	too	restrictive	or	too	open.	

Impact:	

Kubelet	would	manage	the	iptables	on	the	system	and	keep	it	in	sync.	If	you	are	using	any	
other	iptables	management	solution,	then	there	might	be	some	conflicts.	

Audit:	

Run	the	following	command	on	each	node:	

ps -ef | grep kubelet 

Verify	that	if	the	--make-iptables-util-chains	argument	exists	then	it	is	set	to	true.	
If	the	--make-iptables-util-chains	argument	does	not	exist,	and	there	is	a	Kubelet	config	
file	specified	by	--config,	verify	that	the	file	does	not	set	makeIPTablesUtilChains	to	
false. 

Remediation:	

If	using	a	Kubelet	config	file,	edit	the	file	to	set	makeIPTablesUtilChains: true.	
If	using	command	line	arguments,	edit	the	kubelet	service	file	
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	on	each	worker	node	and	
remove	the	--make-iptables-util-chains	argument	from	the	



196	|	P a g e 	
	

KUBELET_SYSTEM_PODS_ARGS	variable.	
Based	on	your	system,	restart	the	kubelet	service.	For	example:	

systemctl daemon-reload 
systemctl restart kubelet.service 

Default	Value: 

By	default,	--make-iptables-util-chains	argument	is	set	to	true.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	

CIS	Controls:	

Version	6	

	 9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	
	 Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	



197	|	P a g e 	
	

4.2.8 Ensure that the --hostname-override argument is not set (Manual) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Do	not	override	node	hostnames.	

Rationale:	

Overriding	hostnames	could	potentially	break	TLS	setup	between	the	kubelet	and	the	
apiserver.	Additionally,	with	overridden	hostnames,	it	becomes	increasingly	difficult	to	
associate	logs	with	a	particular	node	and	process	them	for	security	analytics.	Hence,	you	
should	setup	your	kubelet	nodes	with	resolvable	FQDNs	and	avoid	overriding	the	
hostnames	with	IPs.	

Impact:	

Some	cloud	providers	may	require	this	flag	to	ensure	that	hostname	matches	names	issued	
by	the	cloud	provider.	In	these	environments,	this	recommendation	should	not	apply.	

Audit:	

Run	the	following	command	on	each	node:	

ps -ef | grep kubelet 

Verify	that	--hostname-override	argument	does	not	exist.	
Note	This	setting	is	not	configurable	via	the	Kubelet	config	file. 

Remediation:	

Edit	the	kubelet	service	file	/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	
on	each	worker	node	and	remove	the	--hostname-override	argument	from	the	
KUBELET_SYSTEM_PODS_ARGS	variable.	
Based	on	your	system,	restart	the	kubelet	service.	For	example:	

systemctl daemon-reload 
systemctl restart kubelet.service 

Default	Value: 

By	default,	--hostname-override	argument	is	not	set.	



198	|	P a g e 	
	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://github.com/kubernetes/kubernetes/issues/22063	

CIS	Controls:	

Version	6	

	 3	Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	
	 Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	



199	|	P a g e 	
	

4.2.9 Ensure that the --event-qps argument is set to 0 or a level which 
ensures appropriate event capture (Manual) 

Profile	Applicability:	

•		Level	2	-	Worker	Node	

Description:	

Security	relevant	information	should	be	captured.	The	--event-qps	flag	on	the	Kubelet	can	
be	used	to	limit	the	rate	at	which	events	are	gathered.	Setting	this	too	low	could	result	in	
relevant	events	not	being	logged,	however	the	unlimited	setting	of	0	could	result	in	a	denial	
of	service	on	the	kubelet.	

Rationale:	

It	is	important	to	capture	all	events	and	not	restrict	event	creation.	Events	are	an	important	
source	of	security	information	and	analytics	that	ensure	that	your	environment	is	
consistently	monitored	using	the	event	data.	

Impact:	

Setting	this	parameter	to	0	could	result	in	a	denial	of	service	condition	due	to	excessive	
events	being	created.	The	cluster's	event	processing	and	storage	systems	should	be	scaled	
to	handle	expected	event	loads.	

Audit:	

Run	the	following	command	on	each	node:	

ps -ef | grep kubelet 

Review	the	value	set	for	the	--event-qps	argument	and	determine	whether	this	has	been	
set	to	an	appropriate	level	for	the	cluster.	The	value	of	0	can	be	used	to	ensure	that	all	
events	are	captured.	
If	the	--event-qps	argument	does	not	exist,	check	that	there	is	a	Kubelet	config	file	
specified	by	--config	and	review	the	value	in	this	location. 

Remediation:	

If	using	a	Kubelet	config	file,	edit	the	file	to	set	eventRecordQPS:	to	an	appropriate	level.	
If	using	command	line	arguments,	edit	the	kubelet	service	file	
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	on	each	worker	node	and	



200	|	P a g e 	
	

set	the	below	parameter	in	KUBELET_SYSTEM_PODS_ARGS	variable.	
Based	on	your	system,	restart	the	kubelet	service.	For	example:	

systemctl daemon-reload 
systemctl restart kubelet.service 

Default	Value: 

By	default,	--event-qps	argument	is	set	to	5.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/apis/kubel

etconfig/v1beta1/types.go	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	



201	|	P a g e 	
	

4.2.10 Ensure that the --tls-cert-file and --tls-private-key-file arguments 
are set as appropriate (Manual) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Setup	TLS	connection	on	the	Kubelets.	

Rationale:	

The	connections	from	the	apiserver	to	the	kubelet	are	used	for	fetching	logs	for	pods,	
attaching	(through	kubectl)	to	running	pods,	and	using	the	kubelet’s	port-forwarding	
functionality.	These	connections	terminate	at	the	kubelet’s	HTTPS	endpoint.	By	default,	the	
apiserver	does	not	verify	the	kubelet’s	serving	certificate,	which	makes	the	connection	
subject	to	man-in-the-middle	attacks,	and	unsafe	to	run	over	untrusted	and/or	public	
networks.	

Audit:	

Run	the	following	command	on	each	node:	

ps -ef | grep kubelet 

Verify	that	the	--tls-cert-file	and	--tls-private-key-file	arguments	exist	and	they	are	set	as	
appropriate.	
If	these	arguments	are	not	present,	check	that	there	is	a	Kubelet	config	specified	by	--config	
and	that	it	contains	appropriate	settings	for	tlsCertFile	and	tlsPrivateKeyFile. 

Remediation:	

If	using	a	Kubelet	config	file,	edit	the	file	to	set	tlsCertFile	to	the	location	of	the	certificate	
file	to	use	to	identify	this	Kubelet,	and	tlsPrivateKeyFile	to	the	location	of	the	
corresponding	private	key	file.	
If	using	command	line	arguments,	edit	the	kubelet	service	file	
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	on	each	worker	node	and	set	
the	below	parameters	in	KUBELET_CERTIFICATE_ARGS	variable.	
--tls-cert-file=<path/to/tls-certificate-file>	--tls-private-key-file=<path/to/tls-key-file>	
Based	on	your	system,	restart	the	kubelet	service.	For	example:	



202	|	P a g e 	
	

systemctl daemon-reload 
systemctl restart kubelet.service 



203	|	P a g e 	
	

4.2.11 Ensure that the --rotate-certificates argument is not set to false 
(Manual) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Enable	kubelet	client	certificate	rotation.	

Rationale:	

The	--rotate-certificates	setting	causes	the	kubelet	to	rotate	its	client	certificates	by	
creating	new	CSRs	as	its	existing	credentials	expire.	This	automated	periodic	rotation	
ensures	that	the	there	is	no	downtime	due	to	expired	certificates	and	thus	addressing	
availability	in	the	CIA	security	triad.	

Note:	This	recommendation	only	applies	if	you	let	kubelets	get	their	certificates	from	the	
API	server.	In	case	your	kubelet	certificates	come	from	an	outside	authority/tool	(e.g.	
Vault)	then	you	need	to	take	care	of	rotation	yourself.	

Note:	This	feature	also	require	the	RotateKubeletClientCertificate	feature	gate	to	be	
enabled	(which	is	the	default	since	Kubernetes	v1.7)	

Impact:	

None	

Audit:	

Run	the	following	command	on	each	node:	

ps -ef | grep kubelet 

Verify	that	the	--rotate-certificates	argument	is	not	present,	or	is	set	to	true.	
If	the	--rotate-certificates	argument	is	not	present,	verify	that	if	there	is	a	Kubelet	
config	file	specified	by	--config,	that	file	does	not	contain	rotateCertificates: false. 

Remediation:	

If	using	a	Kubelet	config	file,	edit	the	file	to	add	the	line	rotateCertificates: true	or	
remove	it	altogether	to	use	the	default	value.	
If	using	command	line	arguments,	edit	the	kubelet	service	file	



204	|	P a g e 	
	

/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	on	each	worker	node	and	
remove	--rotate-certificates=false	argument	from	the	KUBELET_CERTIFICATE_ARGS	
variable.	
Based	on	your	system,	restart	the	kubelet	service.	For	example:	

systemctl daemon-reload 
systemctl restart kubelet.service 

Default	Value: 

By	default,	kubelet	client	certificate	rotation	is	enabled.	

References:	

1. https://github.com/kubernetes/kubernetes/pull/41912	
2. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-

bootstrapping/#kubelet-configuration	
3. https://kubernetes.io/docs/imported/release/notes/	
4. https://kubernetes.io/docs/reference/command-line-tools-reference/feature-

gates/	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	



205	|	P a g e 	
	

4.2.12 Verify that the RotateKubeletServerCertificate argument is set to 
true (Manual) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Enable	kubelet	server	certificate	rotation.	

Rationale:	

RotateKubeletServerCertificate	causes	the	kubelet	to	both	request	a	serving	certificate	
after	bootstrapping	its	client	credentials	and	rotate	the	certificate	as	its	existing	credentials	
expire.	This	automated	periodic	rotation	ensures	that	the	there	are	no	downtimes	due	to	
expired	certificates	and	thus	addressing	availability	in	the	CIA	security	triad.	

Note:	This	recommendation	only	applies	if	you	let	kubelets	get	their	certificates	from	the	
API	server.	In	case	your	kubelet	certificates	come	from	an	outside	authority/tool	(e.g.	
Vault)	then	you	need	to	take	care	of	rotation	yourself.	

Impact:	

None	

Audit:	

Ignore	this	check	if	serverTLSBootstrap	is	true	in	the	kubelet	config	file	or	if	the	--rotate-
server-certificates	parameter	is	set	on	kubelet	
Run	the	following	command	on	each	node:	

ps -ef | grep kubelet 

Verify	that	RotateKubeletServerCertificate	argument	exists	and	is	set	to	true. 

Remediation:	

Edit	the	kubelet	service	file	/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	
on	each	worker	node	and	set	the	below	parameter	in	KUBELET_CERTIFICATE_ARGS	variable.	

--feature-gates=RotateKubeletServerCertificate=true 

Based	on	your	system,	restart	the	kubelet	service.	For	example: 



206	|	P a g e 	
	

systemctl daemon-reload 
systemctl restart kubelet.service 

Default	Value: 

By	default,	kubelet	server	certificate	rotation	is	disabled.	

References:	

1. https://github.com/kubernetes/kubernetes/pull/45059	
2. https://kubernetes.io/docs/admin/kubelet-tls-bootstrapping/#kubelet-

configuration	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	



207	|	P a g e 	
	

4.2.13 Ensure that the Kubelet only makes use of Strong Cryptographic 
Ciphers (Manual) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Ensure	that	the	Kubelet	is	configured	to	only	use	strong	cryptographic	ciphers.	

Rationale:	

TLS	ciphers	have	had	a	number	of	known	vulnerabilities	and	weaknesses,	which	can	
reduce	the	protection	provided	by	them.	By	default	Kubernetes	supports	a	number	of	TLS	
ciphersuites	including	some	that	have	security	concerns,	weakening	the	protection	
provided.	

Impact:	

Kubelet	clients	that	cannot	support	modern	cryptographic	ciphers	will	not	be	able	to	make	
connections	to	the	Kubelet	API.	

Audit:	

The	set	of	cryptographic	ciphers	currently	considered	secure	is	the	following:	

• 	
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	

• 	
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	

• 	
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305	

• 	
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	

• 	
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305	

• 	
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	

• 	
TLS_RSA_WITH_AES_256_GCM_SHA384	

• 	
TLS_RSA_WITH_AES_128_GCM_SHA256	

Run	the	following	command	on	each	node:	



208	|	P a g e 	
	

ps -ef | grep kubelet 

If	the	--tls-cipher-suites	argument	is	present,	ensure	it	only	contains	values	included	in	
this	set.	
If	it	is	not	present	check	that	there	is	a	Kubelet	config	file	specified	by	--config,	and	that	
file	sets	TLSCipherSuites:	to	only	include	values	from	this	set. 

Remediation:	

If	using	a	Kubelet	config	file,	edit	the	file	to	set	TLSCipherSuites:	to	
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

,TLS_RSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_128_GCM_SHA256	or	to	a	subset	
of	these	values.	
If	using	executable	arguments,	edit	the	kubelet	service	file	
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf	on	each	worker	node	and	
set	the	--tls-cipher-suites	parameter	as	follows,	or	to	a	subset	of	these	values.	

 --tls-cipher-
suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM
_SHA256,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_RSA_WITH_AES_256_GCM
_SHA384,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_ECDSA_WITH_AES_256_GCM
_SHA384,TLS_RSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_128_GCM_SHA256 

Based	on	your	system,	restart	the	kubelet	service.	For	example: 

systemctl daemon-reload 
systemctl restart kubelet.service 

Default	Value: 

By	default	the	Kubernetes	API	server	supports	a	wide	range	of	TLS	ciphers	

Additional	Information:	

The	list	chosen	above	should	be	fine	for	modern	clients.	It's	essentially	the	list	from	the	
Mozilla	"Modern	cipher"	option	with	the	ciphersuites	supporting	CBC	mode	removed,	as	
CBC	has	traditionally	had	a	lot	of	issues	

CIS	Controls:	

Version	6	

	 3.4	Use	Only	Secure	Channels	For	Remote	System	Administration	
	 Perform	all	remote	administration	of	servers,	workstation,	network	devices,	and	similar	



209	|	P a g e 	
	

equipment	over	secure	channels.	Protocols	such	as	telnet,	VNC,	RDP,	or	others	that	do	not	
actively	support	strong	encryption	should	only	be	used	if	they	are	performed	over	a	
secondary	encryption	channel,	such	as	SSL,	TLS	or	IPSEC.	

Version	7	

	 4.5	Use	Multifactor	Authentication	For	All	Administrative	Access	
	 Use	multi-factor	authentication	and	encrypted	channels	for	all	administrative	account	
access.	

5 Policies 

This	section	contains	recommendations	for	various	Kubernetes	policies	which	are	
important	to	the	security	of	the	environment.	



210	|	P a g e 	
	

5.1 RBAC and Service Accounts 

5.1.1 Ensure that the cluster-admin role is only used where required 
(Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

The	RBAC	role	cluster-admin	provides	wide-ranging	powers	over	the	environment	and	
should	be	used	only	where	and	when	needed.	

Rationale:	

Kubernetes	provides	a	set	of	default	roles	where	RBAC	is	used.	Some	of	these	roles	such	as	
cluster-admin	provide	wide-ranging	privileges	which	should	only	be	applied	where	
absolutely	necessary.	Roles	such	as	cluster-admin	allow	super-user	access	to	perform	any	
action	on	any	resource.	When	used	in	a	ClusterRoleBinding,	it	gives	full	control	over	
every	resource	in	the	cluster	and	in	all	namespaces.	When	used	in	a	RoleBinding,	it	gives	
full	control	over	every	resource	in	the	rolebinding's	namespace,	including	the	namespace	
itself.	

Impact:	

Care	should	be	taken	before	removing	any	clusterrolebindings	from	the	environment	to	
ensure	they	were	not	required	for	operation	of	the	cluster.	Specifically,	modifications	
should	not	be	made	to	clusterrolebindings	with	the	system:	prefix	as	they	are	required	
for	the	operation	of	system	components.	

Audit:	

Obtain	a	list	of	the	principals	who	have	access	to	the	cluster-admin	role	by	reviewing	the	
clusterrolebinding	output	for	each	role	binding	that	has	access	to	the	cluster-admin	
role.	

kubectl get clusterrolebindings -o=custom-
columns=NAME:.metadata.name,ROLE:.roleRef.name,SUBJECT:.subjects[*].name 

Review	each	principal	listed	and	ensure	that	cluster-admin	privilege	is	required	for	it. 

Remediation:	



211	|	P a g e 	
	

Identify	all	clusterrolebindings	to	the	cluster-admin	role.	Check	if	they	are	used	and	if	they	
need	this	role	or	if	they	could	use	a	role	with	fewer	privileges.	
Where	possible,	first	bind	users	to	a	lower	privileged	role	and	then	remove	the	
clusterrolebinding	to	the	cluster-admin	role	:	

kubectl delete clusterrolebinding [name] 

Default	Value: 

By	default	a	single	clusterrolebinding	called	cluster-admin	is	provided	with	the	
system:masters	group	as	its	principal.	

References:	

1. https://kubernetes.io/docs/admin/authorization/rbac/#user-facing-roles	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	



212	|	P a g e 	
	

5.1.2 Minimize access to secrets (Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

The	Kubernetes	API	stores	secrets,	which	may	be	service	account	tokens	for	the	
Kubernetes	API	or	credentials	used	by	workloads	in	the	cluster.	Access	to	these	secrets	
should	be	restricted	to	the	smallest	possible	group	of	users	to	reduce	the	risk	of	privilege	
escalation.	

Rationale:	

Inappropriate	access	to	secrets	stored	within	the	Kubernetes	cluster	can	allow	for	an	
attacker	to	gain	additional	access	to	the	Kubernetes	cluster	or	external	resources	whose	
credentials	are	stored	as	secrets.	

Impact:	

Care	should	be	taken	not	to	remove	access	to	secrets	to	system	components	which	require	
this	for	their	operation	

Audit:	

Review	the	users	who	have	get,	list	or	watch	access	to	secrets	objects	in	the	Kubernetes	
API.	

Remediation:	

Where	possible,	remove	get,	list	and	watch	access	to	secret	objects	in	the	cluster.	

Default	Value:	

By	default	in	a	kubeadm	cluster	the	following	list	of	principals	have	get	privileges	on	
secret	objects	

CLUSTERROLEBINDING                                    SUBJECT                             
TYPE            SA-NAMESPACE 

cluster-admin                                         system:masters                      
Group            

system:controller:clusterrole-aggregation-controller  clusterrole-
aggregation-controller  ServiceAccount  kube-system 



213	|	P a g e 	
	

system:controller:expand-controller                   expand-controller                   
ServiceAccount  kube-system 

system:controller:generic-garbage-collector           generic-garbage-
collector           ServiceAccount  kube-system 

system:controller:namespace-controller                namespace-controller                
ServiceAccount  kube-system 

system:controller:persistent-volume-binder            persistent-volume-
binder            ServiceAccount  kube-system 

system:kube-controller-manager                        system:kube-controller-
manager      User  



214	|	P a g e 	
	

5.1.3 Minimize wildcard use in Roles and ClusterRoles (Manual) 

Profile	Applicability:	

•		Level	1	-	Worker	Node	

Description:	

Kubernetes	Roles	and	ClusterRoles	provide	access	to	resources	based	on	sets	of	objects	and	
actions	that	can	be	taken	on	those	objects.	It	is	possible	to	set	either	of	these	to	be	the	
wildcard	"*"	which	matches	all	items.	

Use	of	wildcards	is	not	optimal	from	a	security	perspective	as	it	may	allow	for	inadvertent	
access	to	be	granted	when	new	resources	are	added	to	the	Kubernetes	API	either	as	CRDs	
or	in	later	versions	of	the	product.	

Rationale:	

The	principle	of	least	privilege	recommends	that	users	are	provided	only	the	access	
required	for	their	role	and	nothing	more.	The	use	of	wildcard	rights	grants	is	likely	to	
provide	excessive	rights	to	the	Kubernetes	API.	

Audit:	

Retrieve	the	roles	defined	across	each	namespaces	in	the	cluster	and	review	for	wildcards	

kubectl get roles --all-namespaces -o yaml 

Retrieve	the	cluster	roles	defined	in	the	cluster	and	review	for	wildcards 

kubectl get clusterroles -o yaml 

Remediation: 

Where	possible	replace	any	use	of	wildcards	in	clusterroles	and	roles	with	specific	objects	
or	actions.	



215	|	P a g e 	
	

5.1.4 Minimize access to create pods (Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

The	ability	to	create	pods	in	a	namespace	can	provide	a	number	of	opportunities	for	
privilege	escalation,	such	as	assigning	privileged	service	accounts	to	these	pods	or	
mounting	hostPaths	with	access	to	sensitive	data	(unless	Pod	Security	Policies	are	
implemented	to	restrict	this	access)	

As	such,	access	to	create	new	pods	should	be	restricted	to	the	smallest	possible	group	of	
users.	

Rationale:	

The	ability	to	create	pods	in	a	cluster	opens	up	possibilities	for	privilege	escalation	and	
should	be	restricted,	where	possible.	

Impact:	

Care	should	be	taken	not	to	remove	access	to	pods	to	system	components	which	require	
this	for	their	operation	

Audit:	

Review	the	users	who	have	create	access	to	pod	objects	in	the	Kubernetes	API.	

Remediation:	

Where	possible,	remove	create	access	to	pod	objects	in	the	cluster.	

Default	Value:	

By	default	in	a	kubeadm	cluster	the	following	list	of	principals	have	create	privileges	on	
pod	objects	

CLUSTERROLEBINDING                                    SUBJECT                             
TYPE            SA-NAMESPACE 

cluster-admin                                         system:masters                      
Group            



216	|	P a g e 	
	

system:controller:clusterrole-aggregation-controller  clusterrole-
aggregation-controller  ServiceAccount  kube-system 

system:controller:daemon-set-controller               daemon-set-controller               
ServiceAccount  kube-system 

system:controller:job-controller                      job-controller                      
ServiceAccount  kube-system 

system:controller:persistent-volume-binder            persistent-volume-
binder            ServiceAccount  kube-system 

system:controller:replicaset-controller               replicaset-controller               
ServiceAccount  kube-system 

system:controller:replication-controller              replication-controller              
ServiceAccount  kube-system 

system:controller:statefulset-controller              statefulset-controller              
ServiceAccount  kube-system 



217	|	P a g e 	
	

5.1.5 Ensure that default service accounts are not actively used. 
(Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

The	default	service	account	should	not	be	used	to	ensure	that	rights	granted	to	
applications	can	be	more	easily	audited	and	reviewed.	

Rationale:	

Kubernetes	provides	a	default	service	account	which	is	used	by	cluster	workloads	where	
no	specific	service	account	is	assigned	to	the	pod.	

Where	access	to	the	Kubernetes	API	from	a	pod	is	required,	a	specific	service	account	
should	be	created	for	that	pod,	and	rights	granted	to	that	service	account.	

The	default	service	account	should	be	configured	such	that	it	does	not	provide	a	service	
account	token	and	does	not	have	any	explicit	rights	assignments.	

Impact:	

All	workloads	which	require	access	to	the	Kubernetes	API	will	require	an	explicit	service	
account	to	be	created.	

Audit:	

For	each	namespace	in	the	cluster,	review	the	rights	assigned	to	the	default	service	account	
and	ensure	that	it	has	no	roles	or	cluster	roles	bound	to	it	apart	from	the	defaults.	
Additionally	ensure	that	the	automountServiceAccountToken: false	setting	is	in	place	for	
each	default	service	account.	

Remediation:	

Create	explicit	service	accounts	wherever	a	Kubernetes	workload	requires	specific	access	
to	the	Kubernetes	API	server.	
Modify	the	configuration	of	each	default	service	account	to	include	this	value	

automountServiceAccountToken: false 

Default	Value: 



218	|	P a g e 	
	

By	default	the	default	service	account	allows	for	its	service	account	token	to	be	mounted	
in	pods	in	its	namespace.	

References:	

1. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/	



219	|	P a g e 	
	

5.1.6 Ensure that Service Account Tokens are only mounted where 
necessary (Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Service	accounts	tokens	should	not	be	mounted	in	pods	except	where	the	workload	
running	in	the	pod	explicitly	needs	to	communicate	with	the	API	server	

Rationale:	

Mounting	service	account	tokens	inside	pods	can	provide	an	avenue	for	privilege	escalation	
attacks	where	an	attacker	is	able	to	compromise	a	single	pod	in	the	cluster.	

Avoiding	mounting	these	tokens	removes	this	attack	avenue.	

Impact:	

Pods	mounted	without	service	account	tokens	will	not	be	able	to	communicate	with	the	API	
server,	except	where	the	resource	is	available	to	unauthenticated	principals.	

Audit:	

Review	pod	and	service	account	objects	in	the	cluster	and	ensure	that	the	option	below	is	
set,	unless	the	resource	explicitly	requires	this	access.	

automountServiceAccountToken: false 

Remediation: 

Modify	the	definition	of	pods	and	service	accounts	which	do	not	need	to	mount	service	
account	tokens	to	disable	it.	

Default	Value:	

By	default,	all	pods	get	a	service	account	token	mounted	in	them.	

References:	

1. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/	



220	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	



221	|	P a g e 	
	

5.2 Pod Security Policies 

A	Pod	Security	Policy	(PSP)	is	a	cluster-level	resource	that	controls	security	settings	for	
pods.	Your	cluster	may	have	multiple	PSPs.	You	can	query	PSPs	with	the	following	
command:	

kubectl get psp 

PodSecurityPolicies	are	used	in	conjunction	with	the	PodSecurityPolicy	admission	
controller	plugin.	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



222	|	P a g e 	
	

5.2.1 Minimize the admission of privileged containers (Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	generally	permit	containers	to	be	run	with	the	securityContext.privileged	flag	
set	to	true.	

Rationale:	

Privileged	containers	have	access	to	all	Linux	Kernel	capabilities	and	devices.	A	container	
running	with	full	privileges	can	do	almost	everything	that	the	host	can	do.	This	flag	exists	
to	allow	special	use-cases,	like	manipulating	the	network	stack	and	accessing	devices.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	does	not	permit	
privileged	containers.	

If	you	need	to	run	privileged	containers,	this	should	be	defined	in	a	separate	PSP	and	you	
should	carefully	check	RBAC	controls	to	ensure	that	only	limited	service	accounts	and	
users	are	given	permission	to	access	that	PSP.	

Impact:	

Pods	defined	with	spec.containers[].securityContext.privileged: true	will	not	be	
permitted.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp 

For	each	PSP,	check	whether	privileged	is	enabled: 

kubectl get psp <name> -o=jsonpath='{.spec.privileged}' 

Verify	that	there	is	at	least	one	PSP	which	does	not	return	true. 

Remediation:	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.privileged	field	is	omitted	or	set	to	false.	



223	|	P a g e 	
	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-
security-policies	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	



224	|	P a g e 	
	

5.2.2 Minimize the admission of containers wishing to share the host 
process ID namespace (Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	generally	permit	containers	to	be	run	with	the	hostPID	flag	set	to	true.	

Rationale:	

A	container	running	in	the	host's	PID	namespace	can	inspect	processes	running	outside	the	
container.	If	the	container	also	has	access	to	ptrace	capabilities	this	can	be	used	to	escalate	
privileges	outside	of	the	container.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	does	not	permit	
containers	to	share	the	host	PID	namespace.	

If	you	need	to	run	containers	which	require	hostPID,	this	should	be	defined	in	a	separate	
PSP	and	you	should	carefully	check	RBAC	controls	to	ensure	that	only	limited	service	
accounts	and	users	are	given	permission	to	access	that	PSP.	

Impact:	

Pods	defined	with	spec.hostPID: true	will	not	be	permitted	unless	they	are	run	under	a	
specific	PSP.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp 

For	each	PSP,	check	whether	privileged	is	enabled: 

kubectl get psp <name> -o=jsonpath='{.spec.hostPID}' 

Verify	that	there	is	at	least	one	PSP	which	does	not	return	true. 

Remediation:	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.hostPID	field	is	omitted	or	set	to	false.	



225	|	P a g e 	
	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	



226	|	P a g e 	
	

5.2.3 Minimize the admission of containers wishing to share the host 
IPC namespace (Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	generally	permit	containers	to	be	run	with	the	hostIPC	flag	set	to	true.	

Rationale:	

A	container	running	in	the	host's	IPC	namespace	can	use	IPC	to	interact	with	processes	
outside	the	container.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	does	not	permit	
containers	to	share	the	host	IPC	namespace.	

If	you	have	a	requirement	to	containers	which	require	hostIPC,	this	should	be	defined	in	a	
separate	PSP	and	you	should	carefully	check	RBAC	controls	to	ensure	that	only	limited	
service	accounts	and	users	are	given	permission	to	access	that	PSP.	

Impact:	

Pods	defined	with	spec.hostIPC: true	will	not	be	permitted	unless	they	are	run	under	a	
specific	PSP.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp 

For	each	PSP,	check	whether	privileged	is	enabled: 

kubectl get psp <name> -o=jsonpath='{.spec.hostIPC}' 

Verify	that	there	is	at	least	one	PSP	which	does	not	return	true. 

Remediation:	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.hostIPC	field	is	omitted	or	set	to	false.	



227	|	P a g e 	
	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	



228	|	P a g e 	
	

5.2.4 Minimize the admission of containers wishing to share the host 
network namespace (Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	generally	permit	containers	to	be	run	with	the	hostNetwork	flag	set	to	true.	

Rationale:	

A	container	running	in	the	host's	network	namespace	could	access	the	local	loopback	
device,	and	could	access	network	traffic	to	and	from	other	pods.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	does	not	permit	
containers	to	share	the	host	network	namespace.	

If	you	have	need	to	run	containers	which	require	hostNetwork,	this	should	be	defined	in	a	
separate	PSP	and	you	should	carefully	check	RBAC	controls	to	ensure	that	only	limited	
service	accounts	and	users	are	given	permission	to	access	that	PSP.	

Impact:	

Pods	defined	with	spec.hostNetwork: true	will	not	be	permitted	unless	they	are	run	
under	a	specific	PSP.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp 

For	each	PSP,	check	whether	privileged	is	enabled: 

kubectl get psp <name> -o=jsonpath='{.spec.hostNetwork}' 

Verify	that	there	is	at	least	one	PSP	which	does	not	return	true. 

Remediation:	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.hostNetwork	field	is	omitted	or	set	to	false.	



229	|	P a g e 	
	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	



230	|	P a g e 	
	

5.2.5 Minimize the admission of containers with 
allowPrivilegeEscalation (Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	generally	permit	containers	to	be	run	with	the	allowPrivilegeEscalation	flag	set	
to	true.	

Rationale:	

A	container	running	with	the	allowPrivilegeEscalation	flag	set	to	true	may	have	
processes	that	can	gain	more	privileges	than	their	parent.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	does	not	permit	
containers	to	allow	privilege	escalation.	The	option	exists	(and	is	defaulted	to	true)	to	
permit	setuid	binaries	to	run.	

If	you	have	need	to	run	containers	which	use	setuid	binaries	or	require	privilege	escalation,	
this	should	be	defined	in	a	separate	PSP	and	you	should	carefully	check	RBAC	controls	to	
ensure	that	only	limited	service	accounts	and	users	are	given	permission	to	access	that	
PSP.	

Impact:	

Pods	defined	with	spec.allowPrivilegeEscalation: true	will	not	be	permitted	unless	
they	are	run	under	a	specific	PSP.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp 

For	each	PSP,	check	whether	privileged	is	enabled: 

kubectl get psp <name> -o=jsonpath='{.spec.allowPrivilegeEscalation}' 

Verify	that	there	is	at	least	one	PSP	which	does	not	return	true. 

Remediation:	



231	|	P a g e 	
	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.allowPrivilegeEscalation	field	is	omitted	or	set	to	false.	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	



232	|	P a g e 	
	

5.2.6 Minimize the admission of root containers (Manual) 

Profile	Applicability:	

•		Level	2	-	Master	Node	

Description:	

Do	not	generally	permit	containers	to	be	run	as	the	root	user.	

Rationale:	

Containers	may	run	as	any	Linux	user.	Containers	which	run	as	the	root	user,	whilst	
constrained	by	Container	Runtime	security	features	still	have	a	escalated	likelihood	of	
container	breakout.	

Ideally,	all	containers	should	run	as	a	defined	non-UID	0	user.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	does	not	permit	root	
users	in	a	container.	

If	you	need	to	run	root	containers,	this	should	be	defined	in	a	separate	PSP	and	you	should	
carefully	check	RBAC	controls	to	ensure	that	only	limited	service	accounts	and	users	are	
given	permission	to	access	that	PSP.	

Impact:	

Pods	with	containers	which	run	as	the	root	user	will	not	be	permitted.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp 

For	each	PSP,	check	whether	running	containers	as	root	is	enabled: 

kubectl get psp <name> -o=jsonpath='{.spec.runAsUser.rule}' 

Verify	that	there	is	at	least	one	PSP	which	returns	MustRunAsNonRoot	or	MustRunAs	with	the	
range	of	UIDs	not	including	0. 

Remediation:	



233	|	P a g e 	
	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.runAsUser.rule	is	set	to	either	MustRunAsNonRoot	or	MustRunAs	with	the	range	of	
UIDs	not	including	0.	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-
security-policies	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	



234	|	P a g e 	
	

5.2.7 Minimize the admission of containers with the NET_RAW 
capability (Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	generally	permit	containers	with	the	potentially	dangerous	NET_RAW	capability.	

Rationale:	

Containers	run	with	a	default	set	of	capabilities	as	assigned	by	the	Container	Runtime.	By	
default	this	can	include	potentially	dangerous	capabilities.	With	Docker	as	the	container	
runtime	the	NET_RAW	capability	is	enabled	which	may	be	misused	by	malicious	
containers.	

Ideally,	all	containers	should	drop	this	capability.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	prevents	containers	
with	the	NET_RAW	capability	from	launching.	

If	you	need	to	run	containers	with	this	capability,	this	should	be	defined	in	a	separate	PSP	
and	you	should	carefully	check	RBAC	controls	to	ensure	that	only	limited	service	accounts	
and	users	are	given	permission	to	access	that	PSP.	

Impact:	

Pods	with	containers	which	run	with	the	NET_RAW	capability	will	not	be	permitted.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp 

For	each	PSP,	check	whether	NET_RAW	is	disabled: 

kubectl get psp <name> -o=jsonpath='{.spec.requiredDropCapabilities}' 

Verify	that	there	is	at	least	one	PSP	which	returns	NET_RAW	or	ALL. 

Remediation:	



235	|	P a g e 	
	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.requiredDropCapabilities	is	set	to	include	either	NET_RAW	or	ALL.	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-
security-policies	

2. https://www.nccgroup.trust/uk/our-research/abusing-privileged-and-
unprivileged-linux-containers/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	



236	|	P a g e 	
	

5.2.8 Minimize the admission of containers with added capabilities 
(Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Do	not	generally	permit	containers	with	capabilities	assigned	beyond	the	default	set.	

Rationale:	

Containers	run	with	a	default	set	of	capabilities	as	assigned	by	the	Container	Runtime.	
Capabilities	outside	this	set	can	be	added	to	containers	which	could	expose	them	to	risks	of	
container	breakout	attacks.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	prevents	containers	
with	capabilities	beyond	the	default	set	from	launching.	

If	you	need	to	run	containers	with	additional	capabilities,	this	should	be	defined	in	a	
separate	PSP	and	you	should	carefully	check	RBAC	controls	to	ensure	that	only	limited	
service	accounts	and	users	are	given	permission	to	access	that	PSP.	

Impact:	

Pods	with	containers	which	require	capabilities	outwith	the	default	set	will	not	be	
permitted.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp 

Verify	that	there	are	no	PSPs	present	which	have	allowedCapabilities	set	to	anything	
other	than	an	empty	array. 

Remediation:	

Ensure	that	allowedCapabilities	is	not	present	in	PSPs	for	the	cluster	unless	it	is	set	to	an	
empty	array.	

Default	Value:	



237	|	P a g e 	
	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-
security-policies	

2. https://www.nccgroup.trust/uk/our-research/abusing-privileged-and-
unprivileged-linux-containers/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	



238	|	P a g e 	
	

5.2.9 Minimize the admission of containers with capabilities assigned 
(Manual) 

Profile	Applicability:	

•		Level	2	-	Master	Node	

Description:	

Do	not	generally	permit	containers	with	capabilities	

Rationale:	

Containers	run	with	a	default	set	of	capabilities	as	assigned	by	the	Container	Runtime.	
Capabilities	are	parts	of	the	rights	generally	granted	on	a	Linux	system	to	the	root	user.	

In	many	cases	applications	running	in	containers	do	not	require	any	capabilities	to	operate,	
so	from	the	perspective	of	the	principal	of	least	privilege	use	of	capabilities	should	be	
minimized.	

Impact:	

Pods	with	containers	require	capabilities	to	operate	will	not	be	permitted.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp 

For	each	PSP,	check	whether	capabilities	have	been	forbidden: 

kubectl get psp <name> -o=jsonpath='{.spec.requiredDropCapabilities}' 

Remediation: 

Review	the	use	of	capabilites	in	applications	runnning	on	your	cluster.	Where	a	namespace	
contains	applicaions	which	do	not	require	any	Linux	capabities	to	operate	consider	adding	
a	PSP	which	forbids	the	admission	of	containers	which	do	not	drop	all	capabilities.	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	



239	|	P a g e 	
	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-
security-policies	

2. https://www.nccgroup.trust/uk/our-research/abusing-privileged-and-
unprivileged-linux-containers/	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	



240	|	P a g e 	
	

5.3 Network Policies and CNI 

5.3.1 Ensure that the CNI in use supports Network Policies (Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

There	are	a	variety	of	CNI	plugins	available	for	Kubernetes.	If	the	CNI	in	use	does	not	
support	Network	Policies	it	may	not	be	possible	to	effectively	restrict	traffic	in	the	cluster.	

Rationale:	

Kubernetes	network	policies	are	enforced	by	the	CNI	plugin	in	use.	As	such	it	is	important	
to	ensure	that	the	CNI	plugin	supports	both	Ingress	and	Egress	network	policies.	

Impact:	

None	

Audit:	

Review	the	documentation	of	CNI	plugin	in	use	by	the	cluster,	and	confirm	that	it	supports	
Ingress	and	Egress	network	policies.	

Remediation:	

If	the	CNI	plugin	in	use	does	not	support	network	policies,	consideration	should	be	given	to	
making	use	of	a	different	plugin,	or	finding	an	alternate	mechanism	for	restricting	traffic	in	
the	Kubernetes	cluster.	

Default	Value:	

This	will	depend	on	the	CNI	plugin	in	use.	

References:	

1. https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-
net/network-plugins/	

Additional	Information:	



241	|	P a g e 	
	

One	example	here	is	Flannel	(https://github.com/coreos/flannel)	which	does	not	support	
Network	policy	unless	Calico	is	also	in	use.	



242	|	P a g e 	
	

5.3.2 Ensure that all Namespaces have Network Policies defined 
(Manual) 

Profile	Applicability:	

•		Level	2	-	Master	Node	

Description:	

Use	network	policies	to	isolate	traffic	in	your	cluster	network.	

Rationale:	

Running	different	applications	on	the	same	Kubernetes	cluster	creates	a	risk	of	one	
compromised	application	attacking	a	neighboring	application.	Network	segmentation	is	
important	to	ensure	that	containers	can	communicate	only	with	those	they	are	supposed	
to.	A	network	policy	is	a	specification	of	how	selections	of	pods	are	allowed	to	
communicate	with	each	other	and	other	network	endpoints.	

Network	Policies	are	namespace	scoped.	When	a	network	policy	is	introduced	to	a	given	
namespace,	all	traffic	not	allowed	by	the	policy	is	denied.	However,	if	there	are	no	network	
policies	in	a	namespace	all	traffic	will	be	allowed	into	and	out	of	the	pods	in	that	
namespace.	

Impact:	

Once	network	policies	are	in	use	within	a	given	namespace,	traffic	not	explicitly	allowed	by	
a	network	policy	will	be	denied.	As	such	it	is	important	to	ensure	that,	when	introducing	
network	policies,	legitimate	traffic	is	not	blocked.	

Audit:	

Run	the	below	command	and	review	the	NetworkPolicy	objects	created	in	the	cluster.	

kubectl --all-namespaces get networkpolicy 

Ensure	that	each	namespace	defined	in	the	cluster	has	at	least	one	Network	Policy. 

Remediation:	

Follow	the	documentation	and	create	NetworkPolicy	objects	as	you	need	them.	

Default	Value:	



243	|	P a g e 	
	

By	default,	network	policies	are	not	created.	

References:	

1. https://kubernetes.io/docs/concepts/services-networking/networkpolicies/	
2. https://octetz.com/posts/k8s-network-policy-apis	
3. https://kubernetes.io/docs/tasks/configure-pod-container/declare-network-

policy/	

CIS	Controls:	

Version	6	

	 14.1	Implement	Network	Segmentation	Based	On	Information	Class	
	 Segment	the	network	based	on	the	label	or	classification	level	of	the	information	stored	
on	the	servers.	Locate	all	sensitive	information	on	separated	VLANS	with	firewall	filtering	
to	ensure	that	only	authorized	individuals	are	only	able	to	communicate	with	systems	
necessary	to	fulfill	their	specific	responsibilities.	

Version	7	

	 14.1	Segment	the	Network	Based	on	Sensitivity	
	 Segment	the	network	based	on	the	label	or	classification	level	of	the	information	stored	
on	the	servers,	locate	all	sensitive	information	on	separated	Virtual	Local	Area	Networks	
(VLANs).	

	 14.2	Enable	Firewall	Filtering	Between	VLANs	
	 Enable	firewall	filtering	between	VLANs	to	ensure	that	only	authorized	systems	are	able	
to	communicate	with	other	systems	necessary	to	fulfill	their	specific	responsibilities.	



244	|	P a g e 	
	

5.4 Secrets Management 

5.4.1 Prefer using secrets as files over secrets as environment variables 
(Manual) 

Profile	Applicability:	

•		Level	2	-	Master	Node	

Description:	

Kubernetes	supports	mounting	secrets	as	data	volumes	or	as	environment	variables.	
Minimize	the	use	of	environment	variable	secrets.	

Rationale:	

It	is	reasonably	common	for	application	code	to	log	out	its	environment	(particularly	in	the	
event	of	an	error).	This	will	include	any	secret	values	passed	in	as	environment	variables,	
so	secrets	can	easily	be	exposed	to	any	user	or	entity	who	has	access	to	the	logs.	

Impact:	

Application	code	which	expects	to	read	secrets	in	the	form	of	environment	variables	would	
need	modification	

Audit:	

Run	the	following	command	to	find	references	to	objects	which	use	environment	variables	
defined	from	secrets.	

kubectl get all -o jsonpath='{range .items[?(@..secretKeyRef)]} {.kind} 
{.metadata.name} {"\n"}{end}' -A 

Remediation: 

If	possible,	rewrite	application	code	to	read	secrets	from	mounted	secret	files,	rather	than	
from	environment	variables.	

Default	Value:	

By	default,	secrets	are	not	defined	

References:	



245	|	P a g e 	
	

1. https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets	

Additional	Information:	

Mounting	secrets	as	volumes	has	the	additional	benefit	that	secret	values	can	be	updated	
without	restarting	the	pod	

CIS	Controls:	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

	 14.8	Encrypt	Sensitive	Information	at	Rest	
	 Encrypt	all	sensitive	information	at	rest	using	a	tool	that	requires	a	secondary	
authentication	mechanism	not	integrated	into	the	operating	system,	in	order	to	access	the	
information.	



246	|	P a g e 	
	

5.4.2 Consider external secret storage (Manual) 

Profile	Applicability:	

•		Level	2	-	Master	Node	

Description:	

Consider	the	use	of	an	external	secrets	storage	and	management	system,	instead	of	using	
Kubernetes	Secrets	directly,	if	you	have	more	complex	secret	management	needs.	Ensure	
the	solution	requires	authentication	to	access	secrets,	has	auditing	of	access	to	and	use	of	
secrets,	and	encrypts	secrets.	Some	solutions	also	make	it	easier	to	rotate	secrets.	

Rationale:	

Kubernetes	supports	secrets	as	first-class	objects,	but	care	needs	to	be	taken	to	ensure	that	
access	to	secrets	is	carefully	limited.	Using	an	external	secrets	provider	can	ease	the	
management	of	access	to	secrets,	especially	where	secrests	are	used	across	both	
Kubernetes	and	non-Kubernetes	environments.	

Impact:	

None	

Audit:	

Review	your	secrets	management	implementation.	

Remediation:	

Refer	to	the	secrets	management	options	offered	by	your	cloud	provider	or	a	third-party	
secrets	management	solution.	

Default	Value:	

By	default,	no	external	secret	management	is	configured.	

CIS	Controls:	

Version	7	

	 14.8	Encrypt	Sensitive	Information	at	Rest	
	 Encrypt	all	sensitive	information	at	rest	using	a	tool	that	requires	a	secondary	
authentication	mechanism	not	integrated	into	the	operating	system,	in	order	to	access	the	
information.	



247	|	P a g e 	
	

5.5 Extensible Admission Control 

5.5.1 Configure Image Provenance using ImagePolicyWebhook 
admission controller (Manual) 

Profile	Applicability:	

•		Level	2	-	Master	Node	

Description:	

Configure	Image	Provenance	for	your	deployment.	

Rationale:	

Kubernetes	supports	plugging	in	provenance	rules	to	accept	or	reject	the	images	in	your	
deployments.	You	could	configure	such	rules	to	ensure	that	only	approved	images	are	
deployed	in	the	cluster.	

Impact:	

You	need	to	regularly	maintain	your	provenance	configuration	based	on	container	image	
updates.	

Audit:	

Review	the	pod	definitions	in	your	cluster	and	verify	that	image	provenance	is	configured	
as	appropriate.	

Remediation:	

Follow	the	Kubernetes	documentation	and	setup	image	provenance.	

Default	Value:	

By	default,	image	provenance	is	not	set.	

References:	

1. https://kubernetes.io/docs/admin/admission-controllers/#imagepolicywebhook	
2. https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/image-provenance.md	
3. https://hub.docker.com/r/dnurmi/anchore-toolbox/	
4. https://github.com/kubernetes/kubernetes/issues/22888	



248	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 18	Application	Software	Security	
	 Application	Software	Security	



249	|	P a g e 	
	

5.7 General Policies 

These	policies	relate	to	general	cluster	management	topics,	like	namespace	best	practices	
and	policies	applied	to	pod	objects	in	the	cluster.	

5.7.1 Create administrative boundaries between resources using 
namespaces (Manual) 

Profile	Applicability:	

•		Level	1	-	Master	Node	

Description:	

Use	namespaces	to	isolate	your	Kubernetes	objects.	

Rationale:	

Limiting	the	scope	of	user	permissions	can	reduce	the	impact	of	mistakes	or	malicious	
activities.	A	Kubernetes	namespace	allows	you	to	partition	created	resources	into	logically	
named	groups.	Resources	created	in	one	namespace	can	be	hidden	from	other	namespaces.	
By	default,	each	resource	created	by	a	user	in	Kubernetes	cluster	runs	in	a	default	
namespace,	called	default.	You	can	create	additional	namespaces	and	attach	resources	and	
users	to	them.	You	can	use	Kubernetes	Authorization	plugins	to	create	policies	that	
segregate	access	to	namespace	resources	between	different	users.	

Impact:	

You	need	to	switch	between	namespaces	for	administration.	

Audit:	

Run	the	below	command	and	review	the	namespaces	created	in	the	cluster.	

kubectl get namespaces 

Ensure	that	these	namespaces	are	the	ones	you	need	and	are	adequately	administered	as	
per	your	requirements. 

Remediation:	

Follow	the	documentation	and	create	namespaces	for	objects	in	your	deployment	as	you	
need	them.	



250	|	P a g e 	
	

Default	Value:	

By	default,	Kubernetes	starts	with	two	initial	namespaces:	

1. default	-	The	default	namespace	for	objects	with	no	other	namespace	
2. kube-system	-	The	namespace	for	objects	created	by	the	Kubernetes	system	

References:	

1. https://kubernetes.io/docs/concepts/overview/working-with-
objects/namespaces/	

2. http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-
deployment.html	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	



251	|	P a g e 	
	

5.7.2 Ensure that the seccomp profile is set to docker/default in your 
pod definitions (Manual) 

Profile	Applicability:	

•		Level	2	-	Master	Node	

Description:	

Enable	docker/default	seccomp	profile	in	your	pod	definitions.	

Rationale:	

Seccomp	(secure	computing	mode)	is	used	to	restrict	the	set	of	system	calls	applications	
can	make,	allowing	cluster	administrators	greater	control	over	the	security	of	workloads	
running	in	the	cluster.	Kubernetes	disables	seccomp	profiles	by	default	for	historical	
reasons.	You	should	enable	it	to	ensure	that	the	workloads	have	restricted	actions	available	
within	the	container.	

Impact:	

If	the	docker/default	seccomp	profile	is	too	restrictive	for	you,	you	would	have	to	
create/manage	your	own	seccomp	profiles.	Also,	you	need	to	enable	all	alpha	features	for	
this	to	work.	There	is	no	individual	switch	to	turn	on	this	feature.	

Audit:	

Review	the	pod	definitions	in	your	cluster.	It	should	create	a	line	as	below:	

  annotations: 
    seccomp.security.alpha.kubernetes.io/pod: docker/default 

Remediation: 

Seccomp	is	an	alpha	feature	currently.	By	default,	all	alpha	features	are	disabled.	So,	you	
would	need	to	enable	alpha	features	in	the	apiserver	by	passing	"--feature-
gates=AllAlpha=true"	argument.	
Edit	the	/etc/kubernetes/apiserver	file	on	the	master	node	and	set	the	KUBE_API_ARGS	
parameter	to	"--feature-gates=AllAlpha=true"	

KUBE_API_ARGS="--feature-gates=AllAlpha=true" 

Based	on	your	system,	restart	the	kube-apiserver	service.	For	example: 



252	|	P a g e 	
	

systemctl restart kube-apiserver.service 

Use	annotations	to	enable	the	docker/default	seccomp	profile	in	your	pod	definitions.	An	
example	is	as	below: 

apiVersion: v1 
kind: Pod 
metadata: 
  name: trustworthy-pod 
  annotations: 
    seccomp.security.alpha.kubernetes.io/pod: docker/default 
spec: 
  containers: 
    - name: trustworthy-container 
      image: sotrustworthy:latest 

Default	Value: 

By	default,	seccomp	profile	is	set	to	unconfined	which	means	that	no	seccomp	profiles	are	
enabled.	

References:	

1. https://github.com/kubernetes/kubernetes/issues/39845	
2. https://github.com/kubernetes/kubernetes/pull/21790	
3. https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/seccomp.md#examples	
4. https://docs.docker.com/engine/security/seccomp/	

CIS	Controls:	

Version	6	

	 5	Controlled	Use	of	Administration	Privileges	
	 Controlled	Use	of	Administration	Privileges	



253	|	P a g e 	
	

5.7.3 Apply Security Context to Your Pods and Containers (Manual) 

Profile	Applicability:	

•		Level	2	-	Master	Node	

Description:	

Apply	Security	Context	to	Your	Pods	and	Containers	

Rationale:	

A	security	context	defines	the	operating	system	security	settings	(uid,	gid,	capabilities,	
SELinux	role,	etc..)	applied	to	a	container.	When	designing	your	containers	and	pods,	make	
sure	that	you	configure	the	security	context	for	your	pods,	containers,	and	volumes.	A	
security	context	is	a	property	defined	in	the	deployment	yaml.	It	controls	the	security	
parameters	that	will	be	assigned	to	the	pod/container/volume.	There	are	two	levels	of	
security	context:	pod	level	security	context,	and	container	level	security	context.	

Impact:	

If	you	incorrectly	apply	security	contexts,	you	may	have	trouble	running	the	pods.	

Audit:	

Review	the	pod	definitions	in	your	cluster	and	verify	that	you	have	security	contexts	
defined	as	appropriate.	

Remediation:	

Follow	the	Kubernetes	documentation	and	apply	security	contexts	to	your	pods.	For	a	
suggested	list	of	security	contexts,	you	may	refer	to	the	CIS	Security	Benchmark	for	Docker	
Containers.	

Default	Value:	

By	default,	no	security	contexts	are	automatically	applied	to	pods.	

References:	

1. https://kubernetes.io/docs/concepts/policy/security-context/	
2. https://learn.cisecurity.org/benchmarks	

CIS	Controls:	



254	|	P a g e 	
	

Version	6	

	 3	Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	
	 Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	



255	|	P a g e 	
	

5.7.4 The default namespace should not be used (Manual) 

Profile	Applicability:	

•		Level	2	-	Master	Node	

Description:	

Kubernetes	provides	a	default	namespace,	where	objects	are	placed	if	no	namespace	is	
specified	for	them.	Placing	objects	in	this	namespace	makes	application	of	RBAC	and	other	
controls	more	difficult.	

Rationale:	

Resources	in	a	Kubernetes	cluster	should	be	segregated	by	namespace,	to	allow	for	security	
controls	to	be	applied	at	that	level	and	to	make	it	easier	to	manage	resources.	

Impact:	

None	

Audit:	

Run	this	command	to	list	objects	in	default	namespace	

kubectl get all  

The	only	entries	there	should	be	system	managed	resources	such	as	the	kubernetes	service 

Remediation:	

Ensure	that	namespaces	are	created	to	allow	for	appropriate	segregation	of	Kubernetes	
resources	and	that	all	new	resources	are	created	in	a	specific	namespace.	

Default	Value:	

Unless	a	namespace	is	specific	on	object	creation,	the	default	namespace	will	be	used	

		



256	|	P a g e 	
	

Appendix:	Summary	Table	
Control	 Set	

Correctly	
Yes	 No	

1	 Control	Plane	Components	
1.1	 Master	Node	Configuration	Files	
1.1.1	 Ensure	that	the	API	server	pod	specification	file	permissions	

are	set	to	644	or	more	restrictive	(Automated)	 o	 o	

1.1.2	 Ensure	that	the	API	server	pod	specification	file	ownership	
is	set	to	root:root	(Automated)	 o	 o	

1.1.3	 Ensure	that	the	controller	manager	pod	specification	file	
permissions	are	set	to	644	or	more	restrictive	(Automated)	 o	 o	

1.1.4	 Ensure	that	the	controller	manager	pod	specification	file	
ownership	is	set	to	root:root	(Automated)	 o	 o	

1.1.5	 Ensure	that	the	scheduler	pod	specification	file	permissions	
are	set	to	644	or	more	restrictive	(Automated)	 o	 o	

1.1.6	 Ensure	that	the	scheduler	pod	specification	file	ownership	is	
set	to	root:root	(Automated)	 o	 o	

1.1.7	 Ensure	that	the	etcd	pod	specification	file	permissions	are	
set	to	644	or	more	restrictive	(Automated)	 o	 o	

1.1.8	 Ensure	that	the	etcd	pod	specification	file	ownership	is	set	
to	root:root	(Automated)	 o	 o	

1.1.9	 Ensure	that	the	Container	Network	Interface	file	
permissions	are	set	to	644	or	more	restrictive	(Manual)	 o	 o	

1.1.10	 Ensure	that	the	Container	Network	Interface	file	ownership	
is	set	to	root:root	(Manual)	 o	 o	

1.1.11	 Ensure	that	the	etcd	data	directory	permissions	are	set	to	
700	or	more	restrictive	(Automated)	 o	 o	

1.1.12	 Ensure	that	the	etcd	data	directory	ownership	is	set	to	
etcd:etcd	(Automated)	 o	 o	

1.1.13	 Ensure	that	the	admin.conf	file	permissions	are	set	to	644	or	
more	restrictive	(Automated)	 o	 o	

1.1.14	 Ensure	that	the	admin.conf	file	ownership	is	set	to	root:root	
(Automated)	 o	 o	

1.1.15	 Ensure	that	the	scheduler.conf	file	permissions	are	set	to	
644	or	more	restrictive	(Automated)	 o	 o	

1.1.16	 Ensure	that	the	scheduler.conf	file	ownership	is	set	to	
root:root	(Automated)	 o	 o	

1.1.17	 Ensure	that	the	controller-manager.conf	file	permissions	are	
set	to	644	or	more	restrictive	(Automated)	 o	 o	

1.1.18	 Ensure	that	the	controller-manager.conf	file	ownership	is	
set	to	root:root	(Automated)	 o	 o	



257	|	P a g e 	
	

1.1.19	 Ensure	that	the	Kubernetes	PKI	directory	and	file	
ownership	is	set	to	root:root	(Automated)	 o	 o	

1.1.20	 Ensure	that	the	Kubernetes	PKI	certificate	file	permissions	
are	set	to	644	or	more	restrictive	(Manual)	 o	 o	

1.1.21	 Ensure	that	the	Kubernetes	PKI	key	file	permissions	are	set	
to	600	(Manual)	 o	 o	

1.2	 API	Server	
1.2.1	 Ensure	that	the	--anonymous-auth	argument	is	set	to	false	

(Manual)	 o	 o	

1.2.2	 Ensure	that	the	--basic-auth-file	argument	is	not	set	
(Automated)	 o	 o	

1.2.3	 Ensure	that	the	--token-auth-file	parameter	is	not	set	
(Automated)	 o	 o	

1.2.4	 Ensure	that	the	--kubelet-https	argument	is	set	to	true	
(Automated)	 o	 o	

1.2.5	 Ensure	that	the	--kubelet-client-certificate	and	--kubelet-
client-key	arguments	are	set	as	appropriate	(Automated)	 o	 o	

1.2.6	 Ensure	that	the	--kubelet-certificate-authority	argument	is	
set	as	appropriate	(Automated)	 o	 o	

1.2.7	 Ensure	that	the	--authorization-mode	argument	is	not	set	to	
AlwaysAllow	(Automated)	 o	 o	

1.2.8	 Ensure	that	the	--authorization-mode	argument	includes	
Node	(Automated)	 o	 o	

1.2.9	 Ensure	that	the	--authorization-mode	argument	includes	
RBAC	(Automated)	 o	 o	

1.2.10	 Ensure	that	the	admission	control	plugin	EventRateLimit	is	
set	(Manual)	 o	 o	

1.2.11	 Ensure	that	the	admission	control	plugin	AlwaysAdmit	is	
not	set	(Automated)	 o	 o	

1.2.12	 Ensure	that	the	admission	control	plugin	AlwaysPullImages	
is	set	(Manual)	 o	 o	

1.2.13	 Ensure	that	the	admission	control	plugin	
SecurityContextDeny	is	set	if	PodSecurityPolicy	is	not	used	
(Manual)	

o	 o	

1.2.14	 Ensure	that	the	admission	control	plugin	ServiceAccount	is	
set	(Automated)	 o	 o	

1.2.15	 Ensure	that	the	admission	control	plugin	
NamespaceLifecycle	is	set	(Automated)	 o	 o	

1.2.16	 Ensure	that	the	admission	control	plugin	PodSecurityPolicy	
is	set	(Automated)	 o	 o	

1.2.17	 Ensure	that	the	admission	control	plugin	NodeRestriction	is	
set	(Automated)	 o	 o	

1.2.18	 Ensure	that	the	--insecure-bind-address	argument	is	not	set	
(Automated)	 o	 o	



258	|	P a g e 	
	

1.2.19	 Ensure	that	the	--insecure-port	argument	is	set	to	0	
(Automated)	 o	 o	

1.2.20	 Ensure	that	the	--secure-port	argument	is	not	set	to	0	
(Automated)	 o	 o	

1.2.21	 Ensure	that	the	--profiling	argument	is	set	to	false	
(Automated)	 o	 o	

1.2.22	 Ensure	that	the	--audit-log-path	argument	is	set	
(Automated)	 o	 o	

1.2.23	 Ensure	that	the	--audit-log-maxage	argument	is	set	to	30	or	
as	appropriate	(Automated)	 o	 o	

1.2.24	 Ensure	that	the	--audit-log-maxbackup	argument	is	set	to	10	
or	as	appropriate	(Automated)	 o	 o	

1.2.25	 Ensure	that	the	--audit-log-maxsize	argument	is	set	to	100	
or	as	appropriate	(Automated)	 o	 o	

1.2.26	 Ensure	that	the	--request-timeout	argument	is	set	as	
appropriate	(Automated)	 o	 o	

1.2.27	 Ensure	that	the	--service-account-lookup	argument	is	set	to	
true	(Automated)	 o	 o	

1.2.28	 Ensure	that	the	--service-account-key-file	argument	is	set	as	
appropriate	(Automated)	 o	 o	

1.2.29	 Ensure	that	the	--etcd-certfile	and	--etcd-keyfile	arguments	
are	set	as	appropriate	(Automated)	 o	 o	

1.2.30	 Ensure	that	the	--tls-cert-file	and	--tls-private-key-file	
arguments	are	set	as	appropriate	(Automated)	 o	 o	

1.2.31	 Ensure	that	the	--client-ca-file	argument	is	set	as	
appropriate	(Automated)	 o	 o	

1.2.32	 Ensure	that	the	--etcd-cafile	argument	is	set	as	appropriate	
(Automated)	 o	 o	

1.2.33	 Ensure	that	the	--encryption-provider-config	argument	is	
set	as	appropriate	(Manual)	 o	 o	

1.2.34	 Ensure	that	encryption	providers	are	appropriately	
configured	(Manual)	 o	 o	

1.2.35	 Ensure	that	the	API	Server	only	makes	use	of	Strong	
Cryptographic	Ciphers	(Manual)	 o	 o	

1.3	 Controller	Manager	
1.3.1	 Ensure	that	the	--terminated-pod-gc-threshold	argument	is	

set	as	appropriate	(Manual)	 o	 o	

1.3.2	 Ensure	that	the	--profiling	argument	is	set	to	false	
(Automated)	 o	 o	

1.3.3	 Ensure	that	the	--use-service-account-credentials	argument	
is	set	to	true	(Automated)	 o	 o	

1.3.4	 Ensure	that	the	--service-account-private-key-file		argument	
is	set	as	appropriate	(Automated)	 o	 o	



259	|	P a g e 	
	

1.3.5	 Ensure	that	the	--root-ca-file	argument	is	set	as	appropriate	
(Automated)	 o	 o	

1.3.6	 Ensure	that	the	RotateKubeletServerCertificate	argument	is	
set	to	true	(Automated)	 o	 o	

1.3.7	 Ensure	that	the	--bind-address	argument	is	set	to	127.0.0.1	
(Automated)	 o	 o	

1.4	 Scheduler	
1.4.1	 Ensure	that	the	--profiling	argument	is	set	to	false	

(Automated)	 o	 o	

1.4.2	 Ensure	that	the	--bind-address	argument	is	set	to	127.0.0.1	
(Automated)	 o	 o	

2	 etcd	
2.1	 Ensure	that	the	--cert-file	and	--key-file	arguments	are	set	as	

appropriate	(Automated)	 o	 o	

2.2	 Ensure	that	the	--client-cert-auth	argument	is	set	to	true	
(Automated)	 o	 o	

2.3	 Ensure	that	the	--auto-tls	argument	is	not	set	to	true	
(Automated)	 o	 o	

2.4	 Ensure	that	the	--peer-cert-file	and	--peer-key-file	
arguments	are	set	as	appropriate	(Automated)	 o	 o	

2.5	 Ensure	that	the	--peer-client-cert-auth	argument	is	set	to	
true	(Automated)	 o	 o	

2.6	 Ensure	that	the	--peer-auto-tls	argument	is	not	set	to	true	
(Automated)	 o	 o	

2.7	 Ensure	that	a	unique	Certificate	Authority	is	used	for	etcd	
(Manual)	 o	 o	

3	 Control	Plane	Configuration	
3.1	 Authentication	and	Authorization	
3.1.1	 Client	certificate	authentication	should	not	be	used	for	users	

(Manual)	 o	 o	

3.2	 Logging	
3.2.1	 Ensure	that	a	minimal	audit	policy	is	created	(Manual)	 o	 o	
3.2.2	 Ensure	that	the	audit	policy	covers	key	security	concerns	

(Manual)	 o	 o	

4	 Worker	Nodes	
4.1	 Worker	Node	Configuration	Files	
4.1.1	 Ensure	that	the	kubelet	service	file	permissions	are	set	to	

644	or	more	restrictive	(Automated)	 o	 o	

4.1.2	 Ensure	that	the	kubelet	service	file	ownership	is	set	to	
root:root	(Automated)	 o	 o	

4.1.3	 If	proxy	kubeconfig	file	exists	ensure	permissions	are	set	to	
644	or	more	restrictive	(Manual)	 o	 o	

4.1.4	 If	proxy	kubeconfig	file	exists	ensure	ownership	is	set	to	
root:root	(Manual)	 o	 o	



260	|	P a g e 	
	

4.1.5	 Ensure	that	the	--kubeconfig	kubelet.conf	file	permissions	
are	set	to	644	or	more	restrictive	(Automated)	 o	 o	

4.1.6	 Ensure	that	the	--kubeconfig	kubelet.conf	file	ownership	is	
set	to	root:root	(Manual)	 o	 o	

4.1.7	 Ensure	that	the	certificate	authorities	file	permissions	are	
set	to	644	or	more	restrictive	(Manual)	 o	 o	

4.1.8	 Ensure	that	the	client	certificate	authorities	file	ownership	
is	set	to	root:root	(Manual)	 o	 o	

4.1.9	 Ensure	that	the	kubelet	--config	configuration	file	has	
permissions	set	to	644	or	more	restrictive	(Automated)	 o	 o	

4.1.10	 Ensure	that	the	kubelet	--config	configuration	file	
ownership	is	set	to	root:root	(Automated)	 o	 o	

4.2	 Kubelet	
4.2.1	 Ensure	that	the	--anonymous-auth	argument	is	set	to	false	

(Automated)	 o	 o	

4.2.2	 Ensure	that	the	--authorization-mode	argument	is	not	set	to	
AlwaysAllow	(Automated)	 o	 o	

4.2.3	 Ensure	that	the	--client-ca-file	argument	is	set	as	
appropriate	(Automated)	 o	 o	

4.2.4	 Verify	that	the	--read-only-port	argument	is	set	to	0	
(Manual)	 o	 o	

4.2.5	 Ensure	that	the	--streaming-connection-idle-timeout	
argument	is	not	set	to	0	(Manual)	 o	 o	

4.2.6	 Ensure	that	the	--protect-kernel-defaults	argument	is	set	to	
true	(Automated)	 o	 o	

4.2.7	 Ensure	that	the	--make-iptables-util-chains	argument	is	set	
to	true	(Automated)	 o	 o	

4.2.8	 Ensure	that	the	--hostname-override	argument	is	not	set	
(Manual)	 o	 o	

4.2.9	 Ensure	that	the	--event-qps	argument	is	set	to	0	or	a	level	
which	ensures	appropriate	event	capture	(Manual)	 o	 o	

4.2.10	 Ensure	that	the	--tls-cert-file	and	--tls-private-key-file	
arguments	are	set	as	appropriate	(Manual)	 o	 o	

4.2.11	 Ensure	that	the	--rotate-certificates	argument	is	not	set	to	
false	(Manual)	 o	 o	

4.2.12	 Verify	that	the	RotateKubeletServerCertificate	argument	is	
set	to	true	(Manual)	 o	 o	

4.2.13	 Ensure	that	the	Kubelet	only	makes	use	of	Strong	
Cryptographic	Ciphers	(Manual)	 o	 o	

5	 Policies	
5.1	 RBAC	and	Service	Accounts	
5.1.1	 Ensure	that	the	cluster-admin	role	is	only	used	where	

required	(Manual)	 o	 o	

5.1.2	 Minimize	access	to	secrets	(Manual)	 o	 o	



261	|	P a g e 	
	

5.1.3	 Minimize	wildcard	use	in	Roles	and	ClusterRoles	(Manual)	 o	 o	
5.1.4	 Minimize	access	to	create	pods	(Manual)	 o	 o	
5.1.5	 Ensure	that	default	service	accounts	are	not	actively	used.	

(Manual)	 o	 o	

5.1.6	 Ensure	that	Service	Account	Tokens	are	only	mounted	
where	necessary	(Manual)	 o	 o	

5.2	 Pod	Security	Policies	
5.2.1	 Minimize	the	admission	of	privileged	containers	(Manual)	 o	 o	
5.2.2	 Minimize	the	admission	of	containers	wishing	to	share	the	

host	process	ID	namespace	(Manual)	 o	 o	

5.2.3	 Minimize	the	admission	of	containers	wishing	to	share	the	
host	IPC	namespace	(Manual)	 o	 o	

5.2.4	 Minimize	the	admission	of	containers	wishing	to	share	the	
host	network	namespace	(Manual)	 o	 o	

5.2.5	 Minimize	the	admission	of	containers	with	
allowPrivilegeEscalation	(Manual)	 o	 o	

5.2.6	 Minimize	the	admission	of	root	containers	(Manual)	 o	 o	
5.2.7	 Minimize	the	admission	of	containers	with	the	NET_RAW	

capability	(Manual)	 o	 o	

5.2.8	 Minimize	the	admission	of	containers	with	added	
capabilities	(Manual)	 o	 o	

5.2.9	 Minimize	the	admission	of	containers	with	capabilities	
assigned	(Manual)	 o	 o	

5.3	 Network	Policies	and	CNI	
5.3.1	 Ensure	that	the	CNI	in	use	supports	Network	Policies	

(Manual)	 o	 o	

5.3.2	 Ensure	that	all	Namespaces	have	Network	Policies	defined	
(Manual)	 o	 o	

5.4	 Secrets	Management	
5.4.1	 Prefer	using	secrets	as	files	over	secrets	as	environment	

variables	(Manual)	 o	 o	

5.4.2	 Consider	external	secret	storage	(Manual)	 o	 o	
5.5	 Extensible	Admission	Control	
5.5.1	 Configure	Image	Provenance	using	ImagePolicyWebhook	

admission	controller	(Manual)	 o	 o	

5.7	 General	Policies	
5.7.1	 Create	administrative	boundaries	between	resources	using	

namespaces	(Manual)	 o	 o	

5.7.2	 Ensure	that	the	seccomp	profile	is	set	to	docker/default	in	
your	pod	definitions	(Manual)	 o	 o	

5.7.3	 Apply	Security	Context	to	Your	Pods	and	Containers	
(Manual)	 o	 o	

5.7.4	 The	default	namespace	should	not	be	used	(Manual)	 o	 o	
	



262	|	P a g e 	
	

	 	



263	|	P a g e 	
	

		

Appendix:	Change	History	
Date	 Version	 Changes	for	this	version	

09/30/2020	 1.6.0	 Automated	Audit	Content	added	

	

	
	


